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1. Introduction

This document describes the draft of the RISC-V base vector extension. The document describes all the indi-
vidual features of the base vector extension.

This is a draft of a stable proposal for the vector speci�cation to be used for implementation and evaluation. Once the draft label is
removed, version 0.7 is intended to be stable enough to begin developing toolchains, functional simulators, and initial implementa-
tions, though will continue to evolve with minor changes and updates.

The term base vector extension is used informally to describe the standard set of vector ISA components.
This draft spec is intended to capture how a certain vector function will be implemented as vector instruc-
tions, but to not yet determine what set of vector instructions are mandatory for a given platform.

Each actual platform pro�le will formally specify the mandatory components of any vector extension adopted by that platform. The
base vector extension can expected to be close to that which will eventually be used in the standard Unix platform pro�le that sup-
ports vectors. Other platforms, including embedded platforms, may choose to implement subsets of these extensions. The exact set
of mandatory supported instructions for an implementation to be compliant with a given pro�le is subject to change until each pro-
�le spec is rati�ed.

The base vector extension is designed to act as a base for additional vector extensions in various domains, in-
cluding cryptography and machine learning.



2. Implementation-de�ned Constant Parameters

Each hart supporting the vector extension de�nes three parameters:

1. The maximum size of a single vector element in bits, ELEN, which must be a power of 2.

2. The number of bits in a vector register, VLEN ≥ ELEN, which must be a power of 2.

3. The striping distance in bits, SLEN, which must be VLEN ≥ SLEN ≥ 32, and which must be a power of 2.

Platform pro�les may set further constraints on these parameters, for example, requiring that ELEN ≥ max(XLEN,FLEN), or requiring
a minimum VLEN value, or setting an SLEN value.

The ISA supports writing binary code that under certain constraints will execute portably on harts with differ-
ent values for these parameters.

Code can be written that will expose differences in implementation parameters.
Thread contexts with active vector state cannot be migrated during execution between harts that have any difference in VLEN, ELEN,
or SLEN parameters.



3. Vector Extension Programmer’s Model

The vector extension adds 32 vector registers, and �ve unprivileged CSRs (vstart, vxsat, vxrm, vtype, vl)
to a base scalar RISC-V ISA. If the base scalar ISA does not include floating-point, then a fcsr register is also
added to hold mirrors of the vxsat and vxrm CSRs as explained below.

Table 1. New vector CSRs
Address Privilege Name Description
0x008 URW vstart Vector start position
0x009 URW vxsat Fixed-Point Saturate Flag
0x00A URW vxrm Fixed-Point Rounding Mode
0xC20 URO vl Vector length
0xC21 URO vtype Vector data type register

3.1. Vector Registers

The vector extension adds 32 architectural vector registers, v0-v31 to the base scalar RISC-V ISA.

Each vector register has a �xed VLEN bits of state.

Z�nx ("F in X") is a new ISA option under consideration where floating-point instructions take their arguments from the integer regis-
ter �le. The 0.7 vector extension is also compatible with this option.

3.2. Vector type register, vtype

The read-only XLEN-wide vector type CSR, vtype provides the default type used to interpret the contents of
the vector register �le, and can only be updated by vsetvl{i} instructions. The vector type also determines
the organization of elements in each vector register, and how multiple vector registers are grouped.

Earlier drafts allowed the vtype register to be written using regular CSR writes. Allowing updates only via the vsetvl{i} instruc-
tions simpli�es maintenance of the vtype register state.

In the base vector extension, the vtype register has three �elds, vill, vsew[2:0], and vlmul[1:0].

Table 2. vtype register layout
Bits Name Description

XLEN-1 vill Illegal value if set
XLEN-2:7 Reserved (write 0)
6:5 vediv[1:0] Used by EDIV extension
4:2 vsew[2:0] Standard element width (SEW) setting
1:0 vlmul[1:0] Vector register group multiplier (LMUL) setting

The smallest base implementation requires storage for only four bits of storage in vtype, two bits for vsew[1:0] and two bits for
vlmul[1:0]. The illegal value represented by vill can be encoded using the illegal 64-bit combination in vsew[1:0] without re-
quiring an additional storage bit.
The vediv[1:0] �eld is used by the EDIV extension described below.
Further standard and custom extensions to the vector base will extend these �elds to support a greater variety of data types.
It is anticipated that an extended 64-bit instruction encoding would allow these �elds to be speci�ed statically in the instruction
encoding.

3.2.1. Vector standard element width vsew



The value in vsew sets the dynamic standard element width (SEW). By default, a vector register is viewed as
being divided into VLEN / SEW standard-width elements. In the base vector extension, only SEW up to
max(XLEN,FLEN) are required to be supported.

Table 3. vsew[2:0] (standard element width) encoding
vsew[2:0] SEW
0 0 0 8
0 0 1 16
0 1 0 32
0 1 1 64
1 0 0 128
1 0 1 256
1 1 0 512
1 1 1 1024

Table 4. Example VLEN = 128 bits
SEW Elements per vector register

64 2
32 4
16 8
8 16

3.2.2. Vector Register Grouping (vlmul)

Multiple vector registers can be grouped together to form a vector register group, so that a single vector in-
struction can operate on multiple vector registers. Vector register groups allow double-width or larger ele-
ments to be operated on with the same vector length as standard-width elements. Vector register groups also
provide greater execution ef�ciency for longer application vectors.

The number of vector registers in a group, LMUL, is an integer power of two set by the vlmul �eld in vtype
(LMUL = 2vlmul[1:0]).

The derived value VLMAX = LMUL*VLEN/SEW represents the maximum number of elements that can be oper-
ated on with a single vector instruction given the current SEW and LMUL settings.

vlmul LMUL #groups VLMAX Grouped registers
0 0 1 32 VLEN/SEW vn (no group)
0 1 2 16 2*VLEN/SEW vn, vn+1
1 0 4 8 4*VLEN/SEW vn, … , vn+3
1 1 8 4 8*VLEN/SEW vn, … , vn+7

When vlmul=01, then vector operations on register v n also operate on vector register v n+1, giving twice the
vector length in bits. Instructions specifying a vector operand with an odd-numbered vector register will raise
an illegal instruction exception.

Similarly, when vlmul=10, vector instructions operate on four vector registers at a time, and instructions
specifying vector operands using vector register numbers that are not multiples of four will raise an illegal in-
struction exception. When vlmul=11, operations operate on eight vector registers at a time, and instructions
specifying vector operands using register numbers that are not multiples of eight will raise an illegal instruc-
tion exception.

This grouping pattern (LMUL=8 has groups v0,v8,v16,v24) was adopted in 0.6 initially to avoid issues with the floating-point calling
convention when floating-point values were overlaid on the vector registers, whereas earlier versions kept the vector register group
names contiguous (LMUL=8 has groups v0, v1, v2, v3). In v0.7, the floating-point registers are separate again.



Mask register instructions always operate on a single vector register, regardless of LMUL setting.

3.2.3. Vector Type Illegal vill

The vill bit is used to encode that a previous vsetvl{i} instruction attempted to write an unsupported
value to vtype.

The vill bit is held in bit XLEN-1 of the CSR to support checking for illegal values with a branch on the sign bit.

If the vill bit is set, then any attempt to execute a vector instruction (other than a vector con�guration in-
struction) will raise an illegal instruction exception.

When the vill bit is set, the other XLEN-1 bits in vtype shall be zero.

3.3. Vector Length Register vl

The XLEN-bit-wide read-only vl CSR can only be updated by the vsetvli and vsetvl instructions, and the
fault-only-�rst vector load instruction variants.

The vl register holds an unsigned integer specifying the number of elements to be updated by a vector in-
struction. Elements in any destination vector register group with indices ≥ vl are zeroed during execution of a
vector instruction. When vstart ≥ vl, no elements are updated in any destination vector register group.

As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.
The number of bits implemented in vl depends on the implementation’s maximum vector length of the smallest supported type.
The smallest vector implementation, RV32IV, would need at least six bits in vl to hold the values 0-32 (with VLEN=32, LMUL=8 and
SEW=8 results in VLMAX of 32).

3.4. Vector Start Index CSR vstart

The vstart read-write CSR speci�es the index of the �rst element to be executed by a vector instruction.

Normally, vstart is only written by hardware on a trap on a vector instruction, with the vstart value repre-
senting the element on which the trap was taken (either a synchronous exception or an asynchronous inter-
rupt), and at which execution should resume after a resumable trap is handled.

All vector instructions are de�ned to begin execution with the element number given in the vstart CSR, leav-
ing earlier elements in the destination vector undisturbed, and to reset the vstart CSR to zero at the end of
execution.

All vector instructions, including vsetvl{i}, reset the vstart CSR to zero.

If the value in the vstart register is greater than or equal to the vector length vl then no element operations
are performed, nor are the elements at the end of the destination vector past vl zeroed. The vstart register
is then reset to zero.

The vstart CSR is de�ned to have only enough writable bits to hold the largest element index (one less than
the maximum VLMAX) or lg2(VLEN) bits. The upper bits of the vstart CSR are hardwired to zero (reads zero,
writes ignored).

The maximum vector length is obtained with the largest LMUL setting (8) and the smallest SEW setting (8), so VLMAX_max =
8*VLEN/8 = VLEN. For example, for VLEN=256, vstart would have 8 bits to represent indices from 0 through 255.

The vstart CSR is writable by unprivileged code, but non-zero vstart values may cause vector instructions
to run substantially slower on some implementations, so vstart should not be used by application program-
mers. A few vector instructions can not be executed with a non-zero vstart value and will raise an illegal in-
struction exception as de�ned below.



Implementations are permitted to raise illegal instruction exceptions when attempting to execute a vector in-
struction with a value of vstart that the implementation can never produce when executing that same in-
struction with the same vtype setting.

For example, some implementations will never take interrupts during execution of a vector arithmetic instruction, instead waiting
until the instruction completes to take the interrupt. Such implementations are permitted to raise an illegal instruction exception
when attempting to execute a vector arithmetic instruction when vstart is nonzero.

3.5. Vector Fixed-Point Rounding Mode Register vxrm

The vector �xed-point rounding-mode register holds a two-bit read-write rounding-mode �eld. The vector
�xed-point rounding-mode is given a separate CSR address to allow independent access, but is also reflected
as a �eld in the upper bits of fcsr. Systems without floating-point must add fcsr when adding the vector
extension.

Table 5. vxrm encoding
Bits [1:0] Abbreviation Rounding Mode
0 0 rnu round-to-nearest-up (add +0.5 LSB)
0 1 rne round-to-nearest-even
1 0 rdn round-down (truncate)
1 1 rod round-to-odd (OR bits into LSB, aka "jam")

Bits[XLEN-1:2] should be written as zeros.

The rounding mode can be set with a single csrwi instruction.

3.6. Vector Fixed-Point Saturation Flag vxsat

The vxsat CSR holds a single read-write bit that indicates if a �xed-point instruction has had to saturate an
output value to �t into a destination format.

The vxsat bit is mirrored in the upper bits of fcsr.

3.7. Vector Fixed-Point Fields in fcsr

The vxrm and vxsat separate CSRs can also be accessed via �elds in the floating-point CSR, fcsr. The fcsr
register must be added to systems without floating-point that add a vector extension.

Table 6. fcsr layout
Bits Name Description

10:9 vxrm Fixed-point rounding mode
8 vxsat Fixed-point accrued saturation flag
7:5 frm Floating-point rounding mode
4:0 fflags Floating-point accrued exception flags

The �elds are packed into fcsr to make context-save/restore faster.

3.8. State of Vector Extension at Reset

The vector extension must have a consistent state at reset. In particular, vtype and vl must have values that
can be read and then restored with a single vsetvl instruction.

It is recommended that at reset, vtype.vill is set, the remaining bits in vtype are zero, and vl is set to zero.

The vstart, vxrm, vxsat CSRs can have arbitrary values at reset.



Any use of the vector unit will require an initial vsetvl{i}, which will reset vstart. The `vxrm and vxsat �elds should be reset
explicitly in software before use.

The vector registers can have arbitrary values at reset.



4. Mapping of Vector Elements to Vector Register State

The following diagrams illustrate how different width elements are packed into the bytes of a vector register
depending on the current SEW and LMUL settings, as well as implementation ELEN and VLEN. Elements are
packed into each vector register with the least-signi�cant byte in the lowest-numbered bits.

Previous RISC-V vector proposals (< 0.6) hid this mapping from software, whereas this proposal has a speci�c mapping for all con-
�gurations, which reduces implementation flexibility but removes need for zeroing on con�g changes. Making the mapping explicit
also has the advantage of simplifying oblivious context save-restore code, as the code can save the con�guration in vl and vtype,
then reset vtype to a convenient value (e.g., four vector groups of LMUL=8, SEW=ELEN) before saving all vector register bits without
needing to parse the con�guration. The reverse process will restore the state.

4.1. Mapping with LMUL=1

When LMUL=1, elements are simply packed in order from the least-signi�cant to most-signi�cant bits of the
vector register.

To increase readability, vector register layouts are drawn with bytes ordered from right to left with increasing byte address. Bits with-
in an element are numbered in a little-endian format with increasing bit index from right to left corresponding to increasing
magnitude.



  The element index is given in hexadecimal and is shown placed at the least-significant byt
 
 
 VLEN=32b 
 
 Byte         3 2 1 0 
 
 SEW=8b       3 2 1 0 
 SEW=16b        1   0 
 SEW=32b            0 
 
 VLEN=64b 
 
 Byte        7 6 5 4 3 2 1 0 
 
 SEW=8b      7 6 5 4 3 2 1 0 
 SEW=16b       3   2   1   0 
 SEW=32b           1       0 
 SEW=64b                   0 
 
 VLEN=128b 
 
 Byte        F E D C B A 9 8 7 6 5 4 3 2 1 0 
 
 SEW=8b      F E D C B A 9 8 7 6 5 4 3 2 1 0 
 SEW=16b       7   6   5   4   3   2   1   0 
 SEW=32b           3       2       1       0 
 SEW=64b                   1               0 
 SEW=128b                                  0 
 
 VLEN=256b 
 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 
 SEW=8b   1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 SEW=16b     F   E   D   C   B   A   9   8   7   6   5   4   3   2   1   0 
 SEW=32b         7       6       5       4       3       2       1       0 
 SEW=64b                 3               2               1               0 
 SEW=128b                                1                               0

4.2. Mapping with LMUL > 1

When vector registers are grouped, the elements of the vector register group are striped across the con-
stituent vector registers. The striping distance in bits, SLEN, sets how many bits are packed contiguously into
one vector register before moving to the next in the group.

For example, when SLEN = 128, the striping pattern is repeated in multiples of 128 bits. The �rst 128/SEW
elements are packed contiguously at the start of the �rst vector register in the group. The next 128/SEW ele-
ments are packed contiguously at the start of the next vector register in the group. After packing the �rst
LMUL*128/SEW elements at the start of each of the LMUL vector registers in the group, the second
LMUL*128/SEW group of elements are packed into the second 128b segment of each of the vector registers in
the group, and so on.



 Example 1: VLEN=32b, SEW=16b, LMUL=2 
 
 Byte         3 2 1 0 
 v2*n           1   0 
 v2*n+1         3   2 
 
 Example 2: VLEN=64b, SEW=32b, LMUL=2 
 
 Byte         7 6 5 4 3 2 1 0 
 v2*n               1       0 
 v2*n+1             3       2 
 
 Example 3: VLEN=128b, SEW=32b, LMUL=2 
 
 Byte        F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v2*n              3       2       1       0 
 v2*n+1            7       6       5       4 
 
 Example 4: VLEN=256b, SEW=32b, LMUL=2 
 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v2*n            B       A       9       8       3       2       1       0 
 v2*n+1          F       E       D       C       7       6       5       4

If SEW > SLEN, the striping pattern places one element in each vector register in the group before moving to
the next vector register in the group. So, when LMUL=2, the even-numbered vector register contains the even-
numbered elements of the vector and the odd-numbered vector register contains the odd-numbered ele-
ments of the vector.

In most implementations, the striping distance SLEN ≥ ELEN.

 Example: VLEN=256b, SEW=256b, LMUL=2 
 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v2*n                                                                    0 
 v2*n+1                                                                  1

When LMUL = 4, four vector registers hold elements as shown:



 Example 1: VLEN=32b, SLEN=32b, SEW=16b, LMUL=4, 
 
 Byte         3 2 1 0 
 v4*n           1   0 
 v4*n+1         3   2 
 v4*n+2         5   4 
 v4*n+3         7   6 
 
 Example 2: VLEN=64b, SLEN=64b, SEW=32b, LMUL=4 
 
 Byte         7 6 5 4 3 2 1 0 
 v4*n               1       0 
 v4*n+1             3       2 
 v4*n+2             5       4 
 v4*n+3             7       6 
 
 
 Example 3: VLEN=128b, SLEN=64b, SEW=32b, LMUL=4 
 
 Byte          F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v4*n                9       8       1       0   32b elements 
 v4*n+1              B       A       3       2 
 v4*n+2              D       C       5       4 
 v4*n+3              F       E       7       6 
 
 Example 4: VLEN=128b, SLEN=128b, SEW=32b, LMUL=4 
 
 Byte          F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v4*n                3       2       1       0   32b elements 
 v4*n+1              7       6       5       4 
 v4*n+2              B       A       9       8 
 v4*n+3              F       E       D       C 
 
 Example 5: VLEN=256b, SLEN=128b, SEW=32b, LMUL=4 
 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v4*n           13      12      11      10       3       2       1       0 
 v4*n+1         17      16      15      14       7       6       5       4 
 v4*n+2         1B      1A      19      18       B       A       9       8 
 v4*n+3         1F      1E      1D      1C       F       E       D       C 
 
 Example 6: VLEN=256b, SLEN=128b, SEW=256b, LMUL=4 
 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v4*n                                                                    0 
 v4*n+1                                                                  1 
 v4*n+2                                                                  2 
 v4*n+3                                                                  3

A similar pattern is followed for LMUL = 8.



 Example: VLEN=256b, SLEN=128b, SEW=32b, LMUL=8 
 
 Byte   1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 v8*n         23      22      21      20       3       2       1       0 
 v8*n+1       27      26      25      24       7       6       5       4 
 v8*n+2       2B      2A      29      28       B       A       9       8 
 v8*n+3       2F      2E      2D      2C       F       E       D       C 
 v8*n+4       33      32      31      30      13      12      11      10 
 v8*n+5       37      36      35      34      17      16      15      14 
 v8*n+6       3B      3A      39      38      1B      1A      19      18 
 v8*n+7       3F      3E      3D      3C      1F      1E      1D      1C

Different striping patterns are architecturally visible, but software can be written that produces the same re-
sults regardless of striping pattern. The primary constraint is to not change the LMUL used to access values
held in a vector register group (i.e., do not read values with a different LMUL than used to write values to the
group).

The striping length SLEN for an implementation is set to optimize the tradeoff between datapath wiring for mixed-width operations
and buffering needed to corner-turn wide vector unit-stride memory accesses into parallel accesses for the vector register �le.
The previous explicit con�guration design allowed these tradeoffs to be managed at the microarchitectural level and optimized for
each con�guration.

4.3. Mapping across Mixed-Width Operations

The pattern used to map elements within a vector register group is designed to reduce datapath wiring when
supporting operations across multiple element widths. The recommended software strategy in this case is to
modify vtype dynamically to keep SEW/LMUL constant (and hence VLMAX constant).

The following example shows four different packed element widths (8b, 16b, 32b, 64b) in a
VLEN=256b/SLEN=128b implementation. The vector register grouping factor (LMUL) is increased by the rela-
tive element size such that each group can hold the same number of vector elements (32 in this example) to
simplify stripmining code. Any operation between elements with the same index only touches operand bits
located within the same 128b portion of the datapath.



 VLEN=256b, SLEN=128b 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 
 SEW=8b, LMUL=1, VLMAX=32 
 
 v1       1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 
 SEW=16b, LMUL=2, VLMAX=32 
 
 v2*n       17  16  15  14  13  12  11  10   7   6   5   4   3   2   1   0 
 v2*n+1     1F  1E  1D  1C  1B  1A  19  18   F   E   D   C   B   A   9   8 
 
 SEW=32b, LMUL=4, VLMAX=32 
 
 v4*n           13      12      11      10       3       2       1       0 
 v4*n+1         17      16      15      14       7       6       5       4 
 v4*n+2         1B      1A      19      18       B       A       9       8 
 v4*n+3         1F      1E      1D      1C       F       E       D       C 
 
 SEW=64b, LMUL=8, VLMAX=32 
 
 v8*n                   11              10               1               0 
 v8*n+1                 13              12               3               2 
 v8*n+2                 15              14               5               4 
 v8*n+3                 17              16               7               6 
 v8*n+4                 19              18               9               8 
 v8*n+5                 1B              1A               B               A 
 v8*n+6                 1D              1C               D               C 
 v8*n+7                 1F              1E               F               E

Larger LMUL settings can also used to simply increase vector length to reduce instruction fetch and dispatch
overheads, in cases where fewer logical vector registers are required.

The following table shows each possible constant SEW/LMUL operating point for loops with mixed-width
operations.

       Numbers in columns are LMUL values, and each column 
       represents constant SEW/LMUL operating point 
 
 SEW/LMUL    1   2   4   8  16  32  64 128 256 512 1024 
 
      SEW 
        8    8   4   2   1 
       16        8   4   2   1 
       32            8   4   2   1 
       64                8   4   2   1 
      128                    8   4   2   1 
      256                        8   4   2   1 
      512                            8   4   2   1 
     1024                                8   4   2   1

Larger LMUL values can cause lower datapath utilization for short vectors if SLEN is less than the spatial datapath width. In the ex-
ample above with VLEN=256b, SLEN=128b, and LMUL=8, if the implementation is purely spatial with a 256b-wide vector datapath,
then for an application vector length less than 17, only half of the datapath will be active. The vsetvl instructions below could have
a facility added to dynamically select an appropriate LMUL according to the required application vector length (AVL) and range of ele-
ment widths.



Narrower machines will set SLEN to be at least as large as the datapath spatial width, so there is no need to reduce LMUL. Wider ma-
chines might set SLEN lower than the spatial datapath width to reduce wiring for mixed-width operations (e.g., width=1024,
ELEN=32, SLEN=128), in which case optimizing LMUL will be important.

4.4. Mask Register Layout

A vector mask occupies only one vector register regardless of SEW and LMUL. The mask bits that are used for
each vector operation depends on the current SEW and LMUL setting.

The maximum number of elements in a vector operand is:

               VLMAX = LMUL * VLEN/SEW

A mask is allocated for each element by dividing the mask register into VLEN/VLMAX �elds. The size of each
mask element in bits, MLEN, is:

                MLEN = VLEN/VLMAX 
                     = VLEN/(LMUL * VLEN/SEW) 
                     = SEW/LMUL

The size of MLEN varies from ELEN (SEW=ELEN, LMUL=1) down to 1 (SEW=8b,LMUL=8), and hence a single
vector register can always hold the entire mask register.

The mask bits for element i are located in bits [MLEN*i+(MLEN-1) : MLEN*i] of the mask register. When a mask
element is written by a compare instruction, the low bit in the mask element is written with the compare re-
sult and the upper bits of the mask element are zeroed. When a value is read as a mask, only the least-signi�-
cant bit of the mask element is used to control masking and the upper bits are ignored. Mask elements past
the end of the current vector length are zeroed.

The pattern is such that for constant SEW/LMUL values, the effective predicate bits are located in the same bit
of the mask vector register, which simpli�es use of masking in loops with mixed-width elements.

 VLEN=32b 
 
          Byte    3   2   1   0 
 LMUL=1,SEW=8b 
                  3   2   1   0  Element 
                [24][16][08][00] Mask bit position in decimal 
 
 LMUL=2,SEW=16b 
                      1       0 
                    [08]    [00] 
                      3       2 
                    [24]    [16] 
 
 LMUL=4,SEW=32b               0 
                            [00] 
                              1 
                            [08] 
                              2 
                            [16] 
                              3 
                            [24]



 LMUL=2,SEW=8b 
                  3   2   1   0 
                [12][08][04][00] 
                  7   6   5   4 
                [28][24][20][16] 
 
 LMUL=8,SEW=32b 
                              0 
                            [00] 
                              1 
                            [04] 
                              2 
                            [08] 
                              3 
                            [12] 
                              4 
                            [16] 
                              5 
                            [20] 
                              6 
                            [24] 
                              7 
                            [28] 
 
 LMUL=8,SEW=8b 
                  3   2   1   0 
                [03][02][01][00] 
                  7   6   5   4 
                [07][06][05][04] 
                  B   A   9   8 
                [11][10][09][08] 
                  F   E   D   C 
                [15][14][13][12] 
                 13  12  11  10 
                [19][18][17][16] 
                 17  16  15  14 
                [23][22][21][20] 
                 1B  1A  19  18 
                [27][26][25][24] 
                 1F  1E  1D  1C 
                [31][30][29][28]



 VLEN=256b, SLEN=128b 
 Byte     1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
 
 SEW=8b, LMUL=1, VLMAX=32 
 
 v1       1F1E1D1C1B1A19181716151413121110 F E D C B A 9 8 7 6 5 4 3 2 1 0 
        [248]          ...            [128] ...[96] ...[64] ...[32] ... [0] Mask bit positio
 
 SEW=16b, LMUL=2, VLMAX=32 
 
 v2*n       17  16  15  14  13  12  11  10   7   6   5   4   3   2   1   0 
          [184]          ...          [128]    ...     [32]    ...      [0] 
 v2*n+1     1F  1E  1D  1C  1B  1A  19  18   F   E   D   C   B   A   9   8 
          [248]          ...          [196]    ...     [96]    ...     [64] 
 
 SEW=32b, LMUL=4, VLMAX=32 
 
 v4*n           13      12      11      10       3       2       1       0 
              [152]        ...        [128]    [24]        ...          [0] 
 v4*n+1         17      16      15      14       7       6       5       4 
              [184]        ...        [160]    [56]        ...         [32] 
 v4*n+2         1B      1A      19      18       B       A       9       8 
              [116]        ...        [192]    [88]        ...         [64] 
 v4*n+3         1F      1E      1D      1C       F       E       D       C 
              [248]        ...        [224]   [120]        ...         [96] 
 
 SEW=64b, LMUL=8, VLMAX=32 
 
 v8*n                   11              10               1               0 
                      [136]           [128]             [8]             [0] 
 v8*n+1                 13              12               3               2 
                      [152]           [144]            [24]            [16] 
 v8*n+2                 15              14               5               4 
                      [168]           [160]            [40]            [32] 
 v8*n+3                 17              16               7               6 
                      [184]           [176]            [56]            [48] 
 v8*n+4                 19              18               9               8 
                      [200]           [192]            [72]            [64] 
 v8*n+5                 1B              1A               B               A 
                      [216]           [208]            [88]            [80] 
 v8*n+6                 1D              1C               D               C 
                      [232]           [224]           [104]            [96] 
 v8*n+7                 1F              1E               F               E 
                      [248]           [240]           [120]           [112]



5. Vector Instruction Formats

The instructions in the vector extension �t under four existing major opcodes (LOAD-FP, STORE-FP, AMO) and
one new major opcode (OP-V).

Vector loads and stores are encoding within the scalar floating-point load and store major opcodes (LOAD-
FP/STORE-FP). The vector load and store encodings repurpose a portion of the standard scalar floating-point
load/store 12-bit immediate �eld to provide further vector instruction encoding, with bit 25 holding the stan-
dard vector mask bit (see Mask Encoding).

Format for Vector Load Instructions under LOAD-FP major opcode 
31 29 28 26  25  24      20 19       15 14   12 11      7 6     0 
 nf  | mop | vm |  lumop   |    rs1    | width |    vd   |0000111| VL*  unit-stride 
 nf  | mop | vm |   rs2    |    rs1    | width |    vd   |0000111| VLS* strided 
 nf  | mop | vm |   vs2    |    rs1    | width |    vd   |0000111| VLX* indexed 
  3     3     1      5           5         3         5       7 
 
Format for Vector Store Instructions under STORE-FP major opcode 
31 29 28 26  25  24      20 19       15 14   12 11      7 6     0 
 nf  | mop | vm |  sumop   |    rs1    | width |   vs3   |0100111| VS*  unit-stride 
 nf  | mop | vm |   rs2    |    rs1    | width |   vs3   |0100111| VSS* strided 
 nf  | mop | vm |   vs2    |    rs1    | width |   vs3   |0100111| VSX* indexed 
  3     3     1      5           5         3         5        7

Format for Vector AMO Instructions under AMO major opcode 
31    27 26  25  24      20 19       15 14   12 11      7 6     0 
 amoop  |wd| vm |   vs2    |    rs1    | width | vs3/vd  |0101111| VAMO* 
   5      1   1      5           5         3        5        7

Formats for Vector Arithmetic Instructions under OP-V major opcode 
 
31       26  25   24      20 19      15 14   12 11      7 6     0 
  funct6   | vm  |   vs2    |    vs1   | 0 0 0 |    vd   |1010111| OP-V (OPIVV) 
  funct6   | vm  |   vs2    |    vs1   | 0 0 1 |    vd   |1010111| OP-V (OPFVV) 
  funct6   | vm  |   vs2    |    vs1   | 0 1 0 |  vd/rd  |1010111| OP-V (OPMVV) 
  funct6   | vm  |   vs2    |   simm5  | 0 1 1 |    vd   |1010111| OP-V (OPIVI) 
  funct6   | vm  |   vs2    |    rs1   | 1 0 0 |    vd   |1010111| OP-V (OPIVX) 
  funct6   | vm  |   vs2    |    rs1   | 1 0 1 |    vd   |1010111| OP-V (OPFVF) 
  funct6   | vm  |   vs2    |    rs1   | 1 1 0 |  vd/rd  |1010111| OP-V (OPMVX) 
     6        1        5          5        3        5        7

Formats for Vector Configuration Instructions under OP-V major opcode 
 
 31 30         25 24      20 19      15 14   12 11      7 6     0 
 0 |        zimm[10:0]      |    rs1   | 1 1 1 |    rd   |1010111| vsetvli 
 1 |   000000    |   rs2    |    rs1   | 1 1 1 |    rd   |1010111| vsetvl 
 1        6            5          5        3        5        7

Vector instructions can have scalar or vector source operands and produce scalar or vector results, and most
vector instructions can be performed either unconditionally or conditionally under a mask.

Vector loads and stores move bit patterns between vector register elements and memory. Vector arithmetic
instructions operate on values held in vector register elements.



5.1. Scalar operands

Scalar operands can be immediates, or taken from the x registers, the f registers, or element 0 of a vector
register. Scalar results are written to an x or f register or to element 0 of a vector register. Any vector register
can be used to hold a scalar regardless of the current LMUL setting.

In a change from v0.6, the floating-point registers no longer overlay the vector registers and scalars can now come from the integer
or floating-point registers. Not overlaying the f registers reduces vector register pressure, avoids interactions with the standard call-
ing convention, simpli�es high-performance scalar floating-point design, and provides compatibility with the Z�nx ISA option. Over-
laying f with v would provide the advantage of lowering the number of state bits in some implementations, but complicates high-
performance designs and would prevent compatibility with the Z�nx ISA option.

5.2. Vector Operands

Vector operands or results may occupy one or more vector registers depending on LMUL, but are always spec-
i�ed using the lowest-numbered vector register in the group. Using other than the lowest-numbered vector
register to specify a vector register group will result in an illegal instruction exception.

Some vector instructions consume and produce wider-width elements and so operate on a larger vector regis-
ter group than that speci�ed in vlmul. The largest vector register group used by an instruction can not be
greater than 8 vector registers, and if an vector instruction would require greater than 8 vector registers in a
group, an illegal instruction exception is raised. For example, attempting a widening operation with LMUL=8
will raise an illegal instruction exception.

5.3. Vector Masking

Masking is supported on many vector instructions. Element operations that are masked off do not modify the
destination vector register element and never generate exceptions.

In the base vector extension, the mask value used to control execution of a masked vector instruction is al-
ways supplied by vector register v0. Only the least-signi�cant bit of each element of the mask vector is used
to control execution.

Future vector extensions may provide longer instruction encodings with space for a full mask register speci�er.

The destination vector register group for a masked vector instruction can only overlap the source mask regis-
ter (v0) when LMUL=1. Otherwise, an illegal vector instruction exception is raised.

This constraint supports restart with a non-zero vstart value.

Other vector registers can be used to hold working mask values, and mask vector logical operations are pro-
vided to perform predicate calculations.

5.3.1. Mask Encoding

Where available, masking is encoded in a single-bit vm �eld in the instruction (inst[25]).

vm Description
0 vector result, only where v0[i].LSB = 1
1 unmasked

In earlier proposals, vm was a two-bit �eld vm[1:0] that provided both true and complement masking using v0 as well as encoding
scalar operations.

Vector masking is represented in assembler code as another vector operand, with .t indicating if operation
occurs when v0[i].LSB is 1. If no masking operand is speci�ed, unmasked vector execution (vm=1) is
assumed.



    vop.v*    v1, v2, v3, v0.t  # enabled where v0[i].LSB=1, m=0 
    vop.v*    v1, v2, v3        # unmasked vector operation, m=1

Even though the base only supports one vector mask register v0 and only the true form of predication, the assembly syntax writes it
out in full to be compatible with future extensions that might add a mask register speci�er and supporting both true and comple-
ment masking. The .t suf�x on the masking operand also helps to visually encode the use of a mask.

5.4. Prestart, Active, Inactive, Body, and Tail Element De�nitions

The elements operated on during a vector instruction’s execution can be divided into four disjoint subsets.

The prestart elements are those whose element index is less than the initial value in the vstart register.
The prestart elements do not raise exceptions and do not update the destination vector register.

The active elements during a vector instruction’s execution are the elements within the current vector
length setting and where the current mask is enabled at that element position. The active elements can
raise exceptions and update the destination vector register group.

The inactive elements are the elements within the current vector length setting but where the current
mask is disabled at that element position. The inactive elements do not raise exceptions and do not up-
date any destination vector register.

The tail elements during a vector instruction’s execution are the elements past the current vector length
setting. The tail elements do not raise exceptions, but do zero the results in any destination vector regis-
ter group.

In addition, another term, body, is used for the set of elements that are either active or inactive, i.e., after
prestart but before the tail.

    for element index x 
    prestart    = (0 <= x < vstart) 
    mask(x)     = unmasked || v0[x].LSB == 1 
    active(x)   = (vstart <= x < vl) && mask(x) 
    inactive(x) = (vstart <= x < vl) && !mask(x) 
    body(x)     = active(x) || inactive(x) 
    tail(x)     = (vl <= x < VLMAX)

All regular vector instructions place zeros in the tail elements of the destination vector register group. Some
vector arithmetic instructions are not maskable, so have no inactive elements, but still zero the tail elements.

The inactive and tail update rules were designed to provide an ef�cient compromise between requirements of implementations with
and without vector register ECC and/or renaming.
Not zeroing past vl would penalize renamed implementations that would have to copy all elements past VL on every instruction exe-
cution, whereas it’s a small penalty for non-renamed implementations to implement the tail zeroing. While a renamed machine
could avoid copying for whole vector registers in a group by not renaming, operations on individual registers may be deep enough
that requiring full occupancy for any vector length would be problematic. Zeroing values past vl does not impact most software, ex-
cept for a small cost in some reduction cases.
For zeroing tail updates, implementations with temporally long vector registers, either with or without register renaming, will be mo-
tivated to add microarchitectural state to avoid actually writing zeros to all tail elements, but this is a relatively simple microarchitec-
tural optimization. For example, one bit per element group or a quantized VL can be used to track the extent of zeroing. An element
group is the set of elements comprising the smallest atomic unit of execution in the microarchitecture (often equivalent to the width
of the physical datapath in the machine). The microarchitectural state for an element group indicates that zero should be returned
for the element group on a read, and that zero should be substituted in for any masked-off elements in the group on the �rst write to
that element group (after which the element group zero bit can be cleared).



Providing merging predication instead of zeroing inactive elements on a masked operation reduces code path length for many code
blocks, and reduces register pressure by allowing different code paths to use disjoint sets of elements in the same vector register.
Implementations with vector register ECC or renaming will have to perform read-update-write on the destination register value to
preserve inactive elements on arithmetic instructions, so would appear to need an extra vector register read port. However, the
arithmetic instructions are designed such that the largest read-port requirement is for fused multiply-add instructions that are de-
structive and overwrite one source, and hence do not need an extra read port to preserve inactive elements. Given that linear alge-
bra is one of the more important applications for vector units, and that fused multiply-add is the dominant operation in linear algebra
routines, microarchitectures will be optimized for fused multiply-add operations and so should be able to preserve inactive elements
on other arithmetic operations without large additional cost. However, masked vector load instructions incur the cost of an additional
read port on their destination register. The need to support resumable vector loads with non-zero vstart values also drives the
need to preserve vector load destination register values. The AMOs have been de�ned to be destructive in their source operand to
reduce the maximum read port requirement for the memory pipe. An option that was considered was to have loads behave different-
ly from arithmetic instructions and to zero any masked-off elements. However, this would require additional instructions and in-
crease register pressure, and vector loads must in any case still cope with non-zero vstart values through some mechanism.



6. Con�guration-Setting Instructions

A set of instructions are provided to allow rapid con�guration of the values in vl and vtype to match applica-
tion needs.

6.1. vsetvli/vsetvl instructions

 vsetvli rd, rs1, vtypei # rd = new vl, rs1 = AVL, vtypei = new vtype setting 
                         # if rs1 = x0, then use maximum vector length 
 vsetvl  rd, rs1, rs2    # rd = new vl, rs1 = AVL, rs2 = new vtype value 
                         # if rs1 = x0, then use maximum vector length

The vsetvli instruction sets the vtype and vl CSRs based on its arguments, and writes the new value of vl
into rd.

The new vtype setting is encoded in the immediate �elds of vsetvli and in the rs2 register for vsetvl.

Formats for Vector Configuration Instructions under OP-V major opcode 
 
 31 30         25 24      20 19      15 14   12 11      7 6     0 
 0 |        zimm[10:0]      |    rs1   | 1 1 1 |    rd   |1010111| vsetvli 
 1 |   000000    |   rs2    |    rs1   | 1 1 1 |    rd   |1010111| vsetvl 
 1        6            5          5        3        5        7

Table 7. vtype register layout
Bits Name Description

XLEN-1 vill Illegal value if set
XLEN-2:7 Reserved (write 0)
6:5 vediv[1:0] Used by EDIV extension
4:2 vsew[2:0] Standard element width (SEW) setting
1:0 vlmul[1:0] Vector register group multiplier (LMUL) setting



 Suggested assembler names used for vtypei setting 
 
 e8    #   8b elements 
 e16   #  16b elements 
 e32   #  32b elements 
 e64   #  64b elements 
 e128  # 128b elements 
 
 m1   # Vlmul x1, assumed if m setting absent 
 m2   # Vlmul x2 
 m4   # Vlmul x4 
 m8   # Vlmul x8 
 
 d1   # EDIV 1, assumed if d setting absent 
 d2   # EDIV 2 
 d4   # EDIV 4 
 d8   # EDIV 8 
 
Examples: 
    vsetvli t0, a0, e8          # SEW= 8, LMUL=1, EDIV=1 
    vsetvli t0, a0, e8,m2       # SEW= 8, LMUL=2, EDIV=1 
    vsetvli t0, a0, e32,m2,d4   # SEW=32, LMUL=2, EDIV=4

If the vtype setting is not supported by the implementation, then the vill bit is set in vtype, the remaining
bits in vtype are set to zero, and the vl register is also set to zero.

The requested application vector length (AVL) is passed in rs1 as an unsigned integer. Using x0 as the rs1
register speci�er, encodes an in�nite AVL, and so requests the maximum possible vector length.

A vsetvl{i} with AVL=x0 can be used to read current VLMAX, though this does overwrite vl.
The behavior of vsetvl{i} does not depend on whether rd=x0. Setting rd=x0 can be useful when the application already knows
what value vl will assume, e.g., when changing SEW and LMUL with constant AVL.
Earlier drafts required a trap when setting vtype to an illegal value. However, this would have added the �rst data-dependent trap
on a CSR write to the ISA. The current scheme also supports light-weight runtime interrogation of the supported vector unit con�gu-
rations by checking if vill is clear for a given setting.

6.2. Constraints on Setting vl

The vsetvl{i} instructions �rst set VLMAX according to the vtype argument, then set vl obeying the fol-
lowing constraints:

1. vl = AVL if AVL ≤ VLMAX

2. vl ≥ ceil(AVL / 2) if AVL < (2 * VLMAX)

3. vl = VLMAX if AVL ≥ (2 * VLMAX)

4. Deterministic on any given implementation for same input AVL and VLMAX values

5. These speci�c properties follow from the prior rules:

a. vl = 0 if AVL = 0

b. vl > 0 if AVL > 0

c. vl ≤ VLMAX

d. vl ≤ AVL



e. a value read from vl when used as the AVL argument to vsetvl{i} results in the same value in vl,
provided the resultant VLMAX equals the value of VLMAX at the time that vl was read

The vl setting rules are designed to be suf�ciently strict to preserve vl behavior across register spills and context swaps for AVL ≤
VLMAX, yet flexible enough to enable implementations to improve vector lane utilization for AVL > VLMAX.

For example, this permits an implementation to set vl = ceil(AVL / 2) for VLMAX < AVL < 2*VLMAX in order to evenly dis-
tribute work over the last two iterations of a stripmine loop. Requirement 2 ensures that the �rst stripmine iteration of reduction
loops uses the largest vector length of all iterations, even in the case of AVL < 2*VLMAX. This allows software to avoid needing to
explicitly calculate a running maximum of vector lengths observed during a stripmined loop.

6.3. vsetvl Instruction

The vsetvl variant operates similarly to vsetvli except that it takes a vtype value from rs2 and can be
used for context restore, and when the vtypei �eld is too small to hold the desired setting.

Several active complex types can be held in different x registers and swapped in as needed using vsetvl.

6.4. Examples

The SEW and LMUL settings can be changed dynamically to provide high throughput on mixed-width opera-
tions in a single loop.

# Example: Load 16-bit values, widen multiply to 32b, shift 32b result 
# right by 3, store 32b values. 
 
# Loop using only widest elements: 
 
loop: 
    vsetvli a3, a0, e32,m8  # Use only 32-bit elements 
    vlh.v v8, (a1)          # Sign-extend 16b load values to 32b elements 
      sll t1, a3, 1         # Multiply length by two bytes/element 
      add a1, a1, t1        # Bump pointer 
    vmul.vx  v8, v8, x10    # 32b multiply result 
    vsrl.vi  v8, v8, 3      # Shift elements 
    vsw.v v8, (a2)          # Store vector of 32b results 
      sll t1, a3, 2         # Multiply length by four bytes/element 
      add a2, a2, t1        # Bump pointer 
      sub a0, a0, a3        # Decrement count 
      bnez a0, loop         # Any more? 
 
# Alternative loop that switches element widths. 
 
loop: 
    vsetvli a3, a0, e16,m4  # vtype = 16-bit integer vectors 
    vlh.v v4, (a1)          # Get 16b vector 
      slli t1, a3, 1        # Multiply length by two bytes/element 
      add a1, a1, t1        # Bump pointer 
    vwmul.vx v8, v4, x10    # 32b in <v8--v15> 
 
    vsetvli x0, a0, e32,m8  # Operate on 32b values 
    vsrl.vi v8, v8, 3 
    vsw.v v8, (a2)          # Store vector of 32b 
      slli t1, a3, 2        # Multiply length by four bytes/element 
      add a2, a2, t1        # Bump pointer 
      sub a0, a0, a3        # Decrement count 
      bnez a0, loop         # Any more?



The second loop is more complex but will have greater performance on machines where 16b widening multi-
plies are faster than 32b integer multiplies, and where 16b vector load can run faster due to the narrower
writes to the vector reg�le.



7. Vector Loads and Stores

Vector loads and stores move values between vector registers and memory. Vector loads and stores are
masked and do not raise exceptions on inactive elements. Masked vector loads do not update inactive ele-
ments in the destination vector register group. Masked vector stores only update active memory elements.

7.1. Vector Load/Store Instruction Encoding

Vector loads and stores are encoded within the scalar floating-point load and store major opcodes (LOAD-
FP/STORE-FP). The vector load and store encodings repurpose a portion of the standard scalar floating-point
load/store 12-bit immediate �eld to provide further vector instruction encoding, with bit 25 holding the stan-
dard vector mask bit (see Mask Encoding).

Format for Vector Load Instructions under LOAD-FP major opcode 
31 29 28 26  25  24      20 19       15 14   12 11      7 6     0 
 nf  | mop | vm |  lumop   |    rs1    | width |    vd   |0000111| VL*  unit-stride 
 nf  | mop | vm |   rs2    |    rs1    | width |    vd   |0000111| VLS* strided 
 nf  | mop | vm |   vs2    |    rs1    | width |    vd   |0000111| VLX* indexed 
  3     3     1      5           5         3         5       7 
 
Format for Vector Store Instructions under STORE-FP major opcode 
31 29 28 26  25  24      20 19       15 14   12 11      7 6     0 
 nf  | mop | vm |  sumop   |    rs1    | width |   vs3   |0100111| VS*  unit-stride 
 nf  | mop | vm |   rs2    |    rs1    | width |   vs3   |0100111| VSS* strided 
 nf  | mop | vm |   vs2    |    rs1    | width |   vs3   |0100111| VSX* indexed 
  3     3     1      5           5         3         5        7

Field Description
rs1[4:0] speci�es x register holding base address
rs2[4:0] speci�es x register holding stride
vs2[4:0] speci�es v register holding address offsets
vs3[4:0] speci�es v register holding store data
vd[4:0] speci�es v register destination of load
vm speci�es vector mask
width[2:0] speci�es size of memory elements, and distinguishes from FP scalar
mop[2:0] speci�es memory addressing mode
nf[2:0] speci�es the number of �elds in each segment, for segment load/stores
lumop[4:0]/sumop[4:0] are additional �elds encoding variants of unit-stride instructions

7.2. Vector Load/Store Addressing Modes

The base vector extension supports unit-stride, strided, and indexed (scatter/gather) addressing modes. Vec-
tor load/store base registers and strides are taken from the GPR x registers.

The base effective address for all vector accesses is given by the contents of the x register named in rs1.

Vector unit-stride operations access elements stored contiguously in memory starting from the base effective
address.

Vector strided operations access the �rst memory element at the base effective address, and then access
subsequent elements at address increments given by the byte offset contained in the x register speci�ed by
rs2.



Vector indexed operations add the contents of each element of the vector offset operand speci�ed by vs2 to
the base effective address to give the effective address of each element. The vector offset operand is treated
as a vector of byte offsets. If the vector offset elements are narrower than XLEN, they are sign-extended to
XLEN before adding to the base effective address. If the vector offset elements are wider than XLEN, the
least-signi�cant XLEN bits are used in the address calculation.

Current PoR for vector indexed instructions requires that vector byte offset (vs2) and vector read/write data (vs3/vd) are of same
width. One question is whether and how to allow for two sizes of vector operand in a vector indexed instruction? For example, for
scatter/gather of byte values in a 64-bit address space without requiring bytes use 64b of space in a vector register.

The vector addressing modes are encoded using the 3-bit mop[2:0] �eld.

Table 8. encoding for loads
mop [2:0] Description Opcodes
0 0 0 zero-extended unit-stride VLxU,VLE
0 0 1 reserved
0 1 0 zero-extended strided VLSxU, VLSE
0 1 1 zero-extended indexed VLXxU, VLXE
1 0 0 sign-extended unit-stride VLx (x!=E)
1 0 1 reserved
1 1 0 sign-extended strided VLSx (x!=E)
1 1 1 sign-extended indexed VLXx (x!=E)

Table 9. encoding for stores
mop [2:0] Description Opcodes
0 0 0 unit-stride VSx
0 0 1 reserved
0 1 0 strided VSSx
0 1 1 indexed-ordered VSXx
1 0 0 reserved
1 0 1 reserved
1 1 0 reserved
1 1 1 indexed-unordered VSUXx

The vector indexed memory operations have two forms, ordered and unordered. The indexed-unordered
stores do not preserve element ordering on stores.

The indexed-unordered variant is provided as a potential implementation optimization. Implementations are free to ignore the opti-
mization and implement indexed-unordered identically to indexed-ordered.

Additional unit-stride vector addressing modes are encoded using the 5-bit lumop and sumop �elds in the
unit-stride load and store instruction encodings respectively.

Table 10. lumop
lumop[4:0] Description
0 0 0 0 0 unit-stride
0 x x x x reserved, x!=0
1 0 0 0 0 unit-stride fault-only-�rst
1 x x x x reserved, x!=0



Table 11. sumop
sumop[4:0] Description
0 0 0 0 0 unit-stride
0 x x x x reserved, x!=0
1 x x x x reserved

The nf[2:0] �eld encodes the number of �elds in each segment. For regular vector loads and stores, nf=0,
indicating that a single value is moved between a vector register group and memory at each element position.
Larger values in the nf �eld are used to access multiple contiguous �elds within a segment as described be-
low in Section Vector Load/Store Segment Instructions (Zvlsseg).

The nf �eld for segment load/stores has replaced the use of the same bits for an address offset �eld. The offset can be replaced
with a single scalar integer calculation, while segment load/stores add more powerful primitives to move items to and from memory.

7.3. Vector Load/Store Width Encoding

The vector loads and stores are encoded using the width values that are not claimed by the standard scalar
floating-point loads and stores. Three of the width types encode vector loads and stores that move �xed-size
memory elements of 8 bits, 16 bits, or 32 bits, while the fourth encoding moves SEW-bit memory elements.

Width [2:0] Mem bits Reg bits Opcode
Standard scalar FP 0 0 1 16 FLEN FLH/FSH
Standard scalar FP 0 1 0 32 FLEN FLW/FSW
Standard scalar FP 0 1 1 64 FLEN FLD/FSD
Standard scalar FP 1 0 0 128 FLEN FLQ/FSQ
Vector byte 0 0 0 vl*8 vl*SEW VxB
Vector halfword 1 0 1 vl*16 vl*SEW VxH
Vector word 1 1 0 vl*32 vl*SEW VxW
Vector element 1 1 1 vl*SEW vl*SEW VxE

Mem bits is the size of element accessed in memory

Reg bits is the size of element accessed in register

Fixed-sized vector loads can optionally sign or zero-extend their memory element into the destination register
element if the register element is wider than the memory element. A �xed-size vector load raises an illegal
instruction exception if the destination register element is narrower than the memory element. The variable-
sized load is encoded as if a zero-extended load, with what would be the sign-extended encoding of a vari-
able-sized load currently reserved.

Fixed-size vector stores take their operand from the least-signi�cant bits of the register element if the register
element if wider than the memory element. Fixed-sized vector stores raise an illegal instruction exception if
the memory element is wider than the register element.

7.4. Vector Unit-Stride Instructions



    # Vector unit-stride loads and stores 
 
    # vd destination, rs1 base address, vm is mask encoding (v0.t or <missing>) 
    vlb.v  vd, (rs1), vm # 8b signed 
    vlh.v  vd, (rs1), vm # 16b signed 
    vlw.v  vd, (rs1), vm # 32b signed 
 
    vlbu.v vd, (rs1), vm # 8b unsigned 
    vlhu.v vd, (rs1), vm # 16b unsigned 
    vlwu.v vd, (rs1), vm # 32b unsigned 
 
    vle.v  vd, (rs1), vm # SEW 
 
    # vs3 store data, rs1 base address, vm is mask encoding (v0.t or <missing>) 
    vsb.v  vs3, (rs1), vm  # 8b store 
    vsh.v  vs3, (rs1), vm  # 16b store 
    vsw.v  vs3, (rs1), vm  # 32b store 
    vse.v  vs3, (rs1), vm  # SEW store

7.5. Vector Strided Instructions

    # Vector strided loads and stores 
 
    # vd destination, rs1 base address, rs2 byte stride 
    vlsb.v  vd, (rs1), rs2, vm # 8b 
    vlsh.v  vd, (rs1), rs2, vm # 16b 
    vlsw.v  vd, (rs1), rs2, vm # 32b 
 
    vlsbu.v vd, (rs1), rs2, vm # unsigned 8b 
    vlshu.v vd, (rs1), rs2, vm # unsigned 16b 
    vlswu.v vd, (rs1), rs2, vm # unsigned 32b 
 
    vlse.v  vd, (rs1), rs2, vm  # SEW 
 
    # vs3 store data, rs1 base address, rs2 byte stride 
    vssb.v vs3, (rs1), rs2, vm  # 8b 
    vssh.v vs3, (rs1), rs2, vm  # 16b 
    vssw.v vs3, (rs1), rs2, vm  # 32b 
    vsse.v vs3, (rs1), rs2, vm  # SEW

Negative and zero strides are supported.

7.6. Vector Indexed Instructions



    # Vector indexed loads and stores 
 
    # vd destination, rs1 base address, vs2 indices 
    vlxb.v  vd, (rs1), vs2, vm  # 8b 
    vlxh.v  vd, (rs1), vs2, vm  # 16b 
    vlxw.v  vd, (rs1), vs2, vm  # 32b 
 
    vlxbu.v vd, (rs1), vs2, vm  # 8b unsigned 
    vlxhu.v vd, (rs1), vs2, vm  # 16b unsigned 
    vlxwu.v vd, (rs1), vs2, vm  # 32b unsigned 
 
    vlxe.v  vd, (rs1), vs2, vm  # SEW 
 
    # Vector ordered-indexed store instructions 
    # vs3 store data, rs1 base address, vs2 indices 
    vsxb.v vs3, (rs1), vs2, vm  # 8b 
    vsxh.v vs3, (rs1), vs2, vm  # 16b 
    vsxw.v vs3, (rs1), vs2, vm  # 32b 
    vsxe.v vs3, (rs1), vs2, vm  # SEW 
 
    # Vector unordered-indexed store instructions 
    vsuxb.v vs3, (rs1), vs2, vm  # 8b 
    vsuxh.v vs3, (rs1), vs2, vm  # 16b 
    vsuxw.v vs3, (rs1), vs2, vm  # 32b 
    vsuxe.v vs3, (rs1), vs2, vm  # SEW

7.7. Unit-stride Fault-Only-First Loads

The unit-stride fault-only-�rst load instructions are used to vectorize loops with data-dependent exit condi-
tions (while loops). These instructions execute as a regular load except that they will only take a trap on ele-
ment 0. If an element > 0 raises an exception, that element and all following elements in the destination vec-
tor register are not modi�ed, and the vector length vl is reduced to the number of elements processed with-
out a trap.

    vlbff.v  vd, (rs1), vm # 8b 
    vlhff.v  vd, (rs1), vm # 16b 
    vlwff.v  vd, (rs1), vm # 32b 
 
    vlbuff.v vd, (rs1), vm # unsigned 8b 
    vlhuff.v vd, (rs1), vm # unsigned 16b 
    vlwuff.v vd, (rs1), vm # unsigned 32b 
 
    vleff.v  vd, (rs1), vm # SEW



strlen example using unit-stride fault-only-first instruction 
 
# size_t strlen(const char *str) 
# a0 holds *str 
 
strlen: 
    mv a3, a0             # Save start 
loop: 
    vsetvli a1, x0, e8  # Vector of bytes of maximum length 
    vlbff.v v1, (a3)      # Load bytes 
    csrr a1, vl           # Get bytes read 
    vmseq.vi v0, v1, 0    # Set v0[i] where v1[i] = 0 
    vmfirst.m a2, v0      # Find first set bit 
    add a3, a3, a1        # Bump pointer 
    bltz a2, loop         # Not found? 
 
    add a0, a0, a1        # Sum start + bump 
    add a3, a3, a2        # Add index 
    sub a0, a3, a0        # Subtract start address+bump 
 
    ret

Strided and scatter/gather fault-only-�rst instructions are not provided as they represent a large security hole, allowing software to
check multiple random pages for accessibility without experiencing a trap. The unit-stride versions only allow probing a region im-
mediately contiguous to a known region, and so do not appreciably impact security. It is possible that security mitigations can be im-
plemented to allow fault-only-�rst variants of non-contiguous accesses in future vector extensions.

7.8. Vector Load/Store Segment Instructions (Zvlsseg)

This is being written as an extension but will likely be mandated in most pro�les, as the operation is too generally useful to omit.

The vector load/store segment instructions move multiple contiguous �elds in memory to and from consecu-
tively numbered vector registers.

These operations support operations on "array-of-structures" datatypes by unpacking each �eld in a structure into separate vector
registers.

As for regular vector loads and stores, the width encoding gives the size of the memory elements, which are
homogeneous in size, while SEW encodes the size of the register elements.

The three-bit nf �eld in the vector instruction encoding is an unsigned integer that contains one less than the
number of �elds per segment, NFIELDS.

nf[2:0] NFIELDS
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

The LMUL setting must be such that LMUL * NFIELDS ⇐ 8, otherwise an illegal instruction exception is raised.



The product LMUL * NFIELDS represents the number of underlying vector registers that will be touched by a segmented load or store
instruction. This constraint makes this total no larger than 1/4 of the architectural register �le, and the same as for regular opera-
tions with LMUL=8. This constraint could be weakened in a future draft.

Each �eld will be held in successively numbered vector register groups. When LMUL>1, each �eld will occupy
a vector register group held in multiple successively numbered vector registers, and the vector register group
for each �eld must follow the usual vector register alignment constraints (e.g., when LMUL=2 and NFIELDS=4,
each �eld’s vector register group must start at an even vector register, but does not have to start at a multiple
of 8 vector register number).

An earlier version imposed a vector register number constraint, but this decreased ability to make use of all registers when NFIELDS
was not a power of 2.

If the vector register numbers accessed by the segment load or store would increment past 31, then an illegal
instruction exception is raised.

This constraint is to help provide forward-compatibility with a future longer instruction encoding that has more addressable vector
registers.

The vl register gives the number of structures to move, which is equal to the number of elements transferred
to each vector register group. Masking is also applied at the level of whole structures.

If a trap is taken, vstart is in units of structures.

7.8.1. Vector Unit-Stride Segment Loads and Stores

The vector unit-stride load and store segment instructions move packed contiguous segments ("array-of-
structures") into multiple destination vector register groups.

For segments with heterogeneous-sized �elds, software can later unpack �elds using additional instructions after the segment load
brings the values into the separate vector registers.

The assembler pre�xes vlseg/vsseg are used for unit-stride segment loads and stores respectively.

    # Format 
    vlseg<nf>{b,h,w}.v vd, (rs1),  vm    # Unit-stride signed segment load template 
    vlseg<nf>e.v vd, (rs1), vm           # Unit-stride segment load template 
    vlseg<nf>{b,h,w}u.v vd, (rs1), vm    # Unit-stride unsigned segment load template 
    vsseg<nf>{b,h,w,e}.v vs3, (rs1), vm  # Unit-stride segment store template 
 
    # Examples 
    vlseg2b.v vd, (rs1), vm   # Load vector of signed 2*1-byte segments into vd, vd+1 
    vlseg3bu.v vd, (rs1), vm  # Load vector of unsigned 3*1-byte segments into vd, vd+1, vd+
    vlseg7w.v vd, (rs1), vm   # Load vector of 7*4-byte segments into vd, vd+1, ... vd+6 
    vlseg8e.v vd, (rs1), vm   # Load vector of 8*SEW-byte segments into vd, vd+1, .. vd+7 
 
    vsseg3b.v vs3, (rs1), vm  # Store packed vector of 3*1-byte segments from vs3,vs3+1,vs3+

For loads, the vd register will hold the �rst �eld loaded from the segment. For stores, the vs3 register is read
to provide the �rst �eld to be stored in each segment.



    # Example 1 
    # Memory structure holds packed RGB pixels (24-bit data structure, 8bpp) 
    vlseg3bu.v v8, (a0), vm 
    # v8 holds the red pixels 
    # v9 holds the green pixels 
    # v10 holds the blue pixels 
 
    # Example 2 
    # Memory structure holds complex values, 32b for real and 32b for imaginary 
    vlseg2w.v v8, (a0), vm 
    # v8 holds real 
    # v9 holds imaginary

There are also fault-only-�rst versions of the unit-stride instructions.

    # Template for vector fault-only-first unit-stride segment loads and stores. 
    vlseg<nf>{b,h,w}ff.v vd, (rs1),  vm    # Unit-stride signed fault-only-first segment loa
    vlseg<nf>eff.v vd, (rs1),  vm          # Unit-stride fault-only-first segment loads 
    vlseg<nf>{b,h,w}uff.v vd, (rs1),   vm  # Unit-stride unsigned fault-only-first segment l

7.8.2. Vector Strided Segment Loads and Stores

Vector strided segment loads and stores move contiguous segments where each segment is separated by the
byte stride offset given in the rs2 GPR argument.

Negative and zero strides are supported.

    # Format 
    vlsseg<nf>{b,h,w}.v vd, (rs1), rs2, vm    # Strided signed segment loads 
    vlsseg<nf>e.v vd, (rs1), rs2, vm          # Strided segment loads 
    vlsseg<nf>{b,h,w}u.v vd, (rs1), rs2, vm   # Strided unsigned segment loads 
    vssseg<nf>{b,h,w,e}.v vs3, (rs1), rs2, vm # Strided segment stores 
 
    # Examples 
    vlsseg3b.v v4, (x5), x6   # Load bytes at addresses x5+i*x6   into v4[i], 
                              #  and bytes at addresses x5+i*x6+1 into v5[i], 
                              #  and bytes at addresses x5+i*x6+2 into v6[i]. 
 
    # Examples 
    vssseg2w.v v2, (x5), x6   # Store words from v2[i] to address x5+i*x6 
                              #   and words from v3[i] to address x5+i*x6+4

For strided segment stores where the byte stride is such that segments could overlap in memory, the seg-
ments must appear to be written in element order.

7.8.3. Vector Indexed Segment Loads and Stores

Vector indexed segment loads and stores move contiguous segments where each segment is located at an
address given by adding the scalar base address in the rs1 �eld to byte offsets in vector register vs2.



    # Format 
    vlxseg<nf>{b,h,w}.v vd, (rs1), vs2, vm    # Indexed signed segment loads 
    vlxseg<nf>e.v vd, (rs1), vs2, vm          # Indexed segment loads 
    vlxseg<nf>{b,h,w}u.v vd, (rs1), vs2, vm   # Indexed unsigned segment loads 
    vsxseg<nf>{b,h,w,e}.v vs3, (rs1), vs2, vm # Indexed segment stores 
 
    # Examples 
    vlxseg3bu.v v4, (x5), v3   # Load bytes at addresses x5+v3[i]   into v4[i], 
                              #  and bytes at addresses x5+v3[i]+1 into v5[i], 
                              #  and bytes at addresses x5+v3[i]+2 into v6[i]. 
 
    # Examples 
    vsxseg2w.v v2, (x5), v5   # Store words from v2[i] to address x5+v5[i] 
                              #   and words from v3[i] to address x5+v5[i]+4

Only ordered indexed segment stores are provided. The segments must appear to be written in element order.



8. Vector AMO Operations (Zvamo)

Pro�les will dictate whether vector AMO operations are supported. The expectation is that the Unix pro�le will require vector AMO
operations.

If vector AMO instructions are supported, then the scalar Zaamo instructions (atomic operations from the
standard A extension) must be present.

Vector AMO operations are encoded using the unused width encodings under the standard AMO major op-
code. Each active element performs an atomic read-modify-write of a single memory location.

Format for Vector AMO Instructions under AMO major opcode 
31    27 26  25  24      20 19       15 14   12 11      7 6     0 
 amoop  |wd| vm |   vs2    |    rs1    | width | vs3/vd  |0101111| VAMO* 
   5      1   1      5           5         3        5        7

vs2[4:0] specifies v register holding address 
vs3/vd[4:0] specifies v register holding source operand and destination 
 
vm specifies vector mask 
width[2:0] specifies size of memory elements, and distinguishes from scalar AMO 
amoop[4:0] specifies the AMO operation 
wd specifies whether the original memory value is written to vd (1=yes, 0=no)

AMOs have the same addressing mode as indexed operations except with no immediate offset. A vector of
byte offsets in register vs2 are added to the scalar base register in rs1 to give the addresses of the AMO
operations.

The vs2 vector register supplies the byte offset of each element, while the vs3 vector register supplies the
source data for the atomic memory operation.

If the wd bit is set, the vd register is written with the initial value of the memory element. If the wd bit is clear,
the vd register is not written.

When wd is clear, the memory system does not need to return the original memory value, and the original values in vd will be
preserved.
The AMOs were de�ned to overwrite source data partly to reduce total memory pipeline read port count for implementations with
register renaming. Also, to support the same addressing mode as vector indexed operations, and because vector AMOs are less like-
ly to need results given that the primary use is parallel in-memory reductions.

Vector AMOs operate as if aq and rl bits were zero on each element with regard to ordering relative to other
instructions in the same hart.

Vector AMOs provide no ordering guarantee between element operations in the same vector AMO instruction.

Table 12. Vector AMO width encoding
Width [2:0] Mem bits Reg bits Opcode

Standard scalar AMO 0 1 0 32 XLEN AMO*.W
Standard scalar AMO 0 1 1 64 XLEN AMO*.D
Standard scalar AMO 1 0 0 128 XLEN AMO*.Q
Vector AMO 1 1 0 32 vl*SEW VAMO*W.V
Vector AMO 1 1 1 64 vl*SEW VAMO*D.V
Vector AMO 0 0 0 128 vl*SEW VAMO*Q.V



Mem bits is the size of element accessed in memory

Reg bits is the size of element accessed in register

The vector AMO width encoding flips the high bit of the corresponding scalar AMO width encoding. SEW must
be at least as wide as the AMO memory element size, otherwise an illegal instruction exception is raised. If
the AMO memory element width is less than SEW, the value returned from memory is sign-extended to �ll
SEW.

If SEW is less than XLEN, then addresses in the vector vs2 are sign-extended to XLEN. If SEW is greater than
XLEN, an illegal instruction exception is raised.

Note, the AMO instruction encoding does not support arbitrary SEW-bit memory elements, only the standard
32-bit, 64-bit, 128-bit sizes required by the standard scalar base architecture.

The vector amoop[4:0] �eld uses the same encoding as the scalar 5-bit AMO instruction �eld, except that LR
and SC are not supported.

Table 13. amoop
amoop opcode
0 0 0 0 1 vamoswap
0 0 0 0 0 vamoadd
0 0 1 0 0 vamoxor
0 1 1 0 0 vamoand
0 1 0 0 0 vamoor
1 0 0 0 0 vamomin
1 0 1 0 0 vamomax
1 1 0 0 0 vamominu
1 1 1 0 0 vamomaxu



9. Vector Memory Alignment Constraints

If the elements accessed by a vector memory instruction are not naturally aligned to the memory element
size, either an address misaligned exception is raised on that element or the element is transferred
successfully.

Vector memory accesses follow the same rules for atomicity as scalar memory accesses.



10. Vector Memory Consistency Model

Vector memory instructions appear to execute in program order on the local hart. Vector memory instructions
follow RVWMO at the instruction level, and element operations are ordered within the instruction as if per-
formed by an element-ordered sequence of syntactically independent scalar instructions. Vector indexed-or-
dered stores write elements to memory in element order. Vector indexed-unordered stores do not preserve
element order for writes within a single vector store instruction.

Need to flesh out details.



11. Vector Arithmetic Instruction Formats

The vector arithmetic instructions use a new major opcode (OP-V = 10101112) which neighbors OP-FP. The
three-bit funct3 �eld is used to de�ne sub-categories of vector instructions.

Formats for Vector Arithmetic Instructions under OP-V major opcode 
 
31       26  25   24      20 19      15 14   12 11      7 6     0 
  funct6   | vm  |   vs2    |    vs1   | 0 0 0 |    vd   |1010111| OP-V (OPIVV) 
  funct6   | vm  |   vs2    |    vs1   | 0 0 1 |    vd   |1010111| OP-V (OPFVV) 
  funct6   | vm  |   vs2    |    vs1   | 0 1 0 |  vd/rd  |1010111| OP-V (OPMVV) 
  funct6   | vm  |   vs2    |   simm5  | 0 1 1 |    vd   |1010111| OP-V (OPIVI) 
  funct6   | vm  |   vs2    |    rs1   | 1 0 0 |    vd   |1010111| OP-V (OPIVX) 
  funct6   | vm  |   vs2    |    rs1   | 1 0 1 |    vd   |1010111| OP-V (OPFVF) 
  funct6   | vm  |   vs2    |    rs1   | 1 1 0 |  vd/rd  |1010111| OP-V (OPMVX) 
     6        1        5          5        3        5        7

11.1. Vector Arithmetic Instruction encoding

The funct3 �eld encodes the operand type and source locations.

Table 14. funct3
funct3[2:0] Operands Source of scalar(s)
0 0 0 OPIVV vector-vector -
0 0 1 OPFVV vector-vector -
0 1 0 OPMVV vector-vector -
0 1 1 OPIVI vector-immediate imm[4:0]
1 0 0 OPIVX vector-scalar GPR x register rs1
1 0 1 OPFVF vector-scalar FP f register rs1
1 1 0 OPMVX vector-scalar GPR x register rs1
1 1 1 OPCFG scalars-imms GPR x register rs1 & rs2/imm

Integer operations are performed using unsigned or two’s-complement signed integer arithmetic depending
on the opcode.

All standard vector floating-point arithmetic operations follow the IEEE-754/2008 standard. All vector float-
ing-point operations use the dynamic rounding mode in the frm register.

Vector-vector operations take two vectors of operands from vector register groups speci�ed by vs2 and vs1
respectively.

Vector-scalar operations can have three possible forms, but in all cases take one vector of operands from a
vector register group speci�ed by vs2 and a second scalar source operand from one of three alternative
sources.

1. For integer operations, the scalar can be a 5-bit immediate encoded in the rs1 �eld. The value is sign- or
zero-extended to SEW bits.

2. For integer operations, the scalar can be taken from the scalar x register speci�ed by rs1. If XLEN>SEW,
the least-signi�cant bits of the x register are used. If XLEN<SEW, the value from the x register is sign-ex-
tended to SEW bits.



3. For floating-point operations, the scalar can be taken from a scalar f register. If FLEN>SEW, the value in
the f registers is checked for a valid NaN-boxed value, in which case the least-signi�cant bits of the
`f`register are used, else the canonical NaN value is used. If FLEN<SEW, the value is NaN-boxed (one-
extended) to SEW.

The proposed Z�nx variants will take the floating-point scalar argument from the x registers.

Vector arithmetic instructions are masked under control of the vm �eld.

# Assembly syntax pattern for vector binary arithmetic instructions 
 
# Operations returning vector results, masked by vm (v0.t, <nothing>) 
vop.vv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vop.vx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1] 
vop.vi  vd, vs2, imm, vm  # integer vector-immediate   vd[i] = vs2[i] op imm 
 
vfop.vv  vd, vs2, vs1, vm # FP vector-vector operation vd[i] = vs2[i] fop vs1[i] 
vfop.vf  vd, vs2, rs1, vm # FP vector-scalar operation vd[i] = vs2[i] fop f[rs1]

In the encoding, vs2 is the �rst operand, while rs1/simm5 is the second operand. This is the opposite to the standard scalar order-
ing. This arrangement retains the existing encoding conventions that instructions that read only one scalar register, read it from rs1,
and that 5-bit immediates are sourced from the rs1 �eld.

# Assembly syntax pattern for vector ternary arithmetic instructions (multiply-add) 
 
# Integer operations overwriting sum input 
vop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vs2[i] + vd[i] 
vop.vx vd, rs1, vs2, vm  # vd[i] = x[rs1] * vs2[i] + vd[i] 
 
# Integer operations overwriting product input 
vop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vd[i] + vs2[i] 
vop.vx vd, rs1, vs2, vm  # vd[i] = x[rs1] * vd[i] + vs2[i] 
 
# Floating-point operations overwriting sum input 
vfop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vs2[i] + vd[i] 
vfop.vf vd, rs1, vs2, vm  # vd[i] = f[rs1] * vs2[i] + vd[i] 
 
# Floating-point operations overwriting product input 
vfop.vv vd, vs1, vs2, vm  # vd[i] = vs1[i] * vd[i] + vs2[i] 
vfop.vf vd, rs1, vs2, vm  # vd[i] = f[rs1] * vd[i] + vs2[i]

For ternary multiply-add operations, the assembler syntax always places the destination vector register �rst, followed by either rs1
or vs1, then vs2. This ordering provides a more natural reading of the assembler for these ternary operations, as the multiply op-
erands are always next to each other.

11.2. Widening Vector Arithmetic Instructions

A few vector arithmetic instructions are de�ned to be widening operations where the destination elements
are 2*SEW wide and are stored in a vector register group with twice the number of vector registers.

The �rst operand can be either single or double-width. These are generally written with a vw* pre�x on the
opcode or vfw* for vector floating-point operations.



Assembly syntax pattern for vector widening arithmetic instructions 
 
# Double-width result, two single-width sources: 2*SEW = SEW op SEW 
vwop.vv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vwop.vx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1] 
 
# Double-width result, first source double-width, second source single-width: 2*SEW = 2*SEW 
vwop.wv  vd, vs2, vs1, vm  # integer vector-vector      vd[i] = vs2[i] op vs1[i] 
vwop.wx  vd, vs2, rs1, vm  # integer vector-scalar      vd[i] = vs2[i] op x[rs1]

Originally, a w suf�x was used on opcode, but this could be confused with the use of a w suf�x to mean word-sized operations in dou-
bleword integers, so the w was moved to pre�x.
The floating-point widening operations were changed to vfw* from vwf* to be more consistent with any scalar widening floating-
point operations that will be written as fw*.
For integer multiply-add, another possible widening option increases the size of the accumulator to 4*SEW (i.e., 4*SEW +=
SEW*SEW). These would be distinguished by a vw4* pre�x on the opcode. These are not included at this time, but are a possible ad-
dition to spec.

The destination vector register group results are arranged as if both SEW and LMUL were at twice their current
settings (i.e., the destination element width is 2*SEW, and the destination vector register group LMUL is
2*LMUL).

For all widening instructions, the destination element width must be a supported element width and the des-
tination LMUL value must also be a supported LMUL value (≤8, i.e., current LMUL must be ≤4), otherwise an
illegal instruction exception is raised.

The destination vector register group must be speci�ed using a vector register number that is valid for the
destination’s LMUL value, otherwise an illegal instruction exception is raised.

The destination vector register group cannot overlap a source vector register group of a different element
width (including the mask register if masked), otherwise an illegal instruction exception is raised.

This constraint is necessary to support restart with non-zero vstart.
For the vw<op>.wv vd, vs2, vs1 format instructions, it is legal for vd to equal vs2.

11.3. Narrowing Vector Arithmetic Instructions

A few instructions are provided to convert double-width source vectors into single-width destination vectors.
These instructions convert a vector register group organized as if LMUL and SEW were twice the current set-
tings, and convert to a vector register group with the current LMUL/SEW vectors/elements.

If (2*LMUL > 8), or (2 * SEW) > ELEN, an illegal instruction exception is raised.

An alternative design decision would have been to treat LMUL as de�ning the size of the source vector register group. The choice
here is motivated by the belief the chosen approach will require fewer LMUL changes.

The source and destination vector register groups have to be speci�ed with a vector register number that is
legal for the source and destination LMUL value respectively, otherwise an illegal instruction exception is
raised.

Where there is a second source vector register group (speci�ed by vs1), this has the same (narrower) width
as the result.

The destination vector register group cannot overlap the �rst source vector register group (speci�ed by vs2).
The destination vector register group cannot overlap the mask register if used, unless LMUL=1. If either con-
straint is violated, an illegal instruction exception is raised.

It is safe to overwrite a second source vector register group with the same LMUL and element width as the result, or to overwrite a
mask register when LMUL=1.



A vn* pre�x on the opcode is used to distinguish these instructions in the assembler, or a vfn* pre�x for nar-
rowing floating-point opcodes.

Comparison operations that set a mask register are also implicitly a narrowing operation.



12. Vector Integer Arithmetic Instructions

A set of vector integer arithmetic instructions are provided.

12.1. Vector Single-Width Integer Add and Subtract

Vector integer add and subtract are provided. Reverse-subtract instructions are also provided for the vector-
scalar forms.

# Integer adds. 
vadd.vv vd, vs2, vs1, vm   # Vector-vector 
vadd.vx vd, vs2, rs1, vm   # vector-scalar 
vadd.vi vd, vs2, imm, vm   # vector-immediate 
 
# Integer subtract 
vsub.vv vd, vs2, vs1, vm   # Vector-vector 
vsub.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Integer reverse subtract 
vrsub.vx vd, vs2, rs1, vm   # vd[i] = rs1 - vs2[i] 
vrsub.vi vd, vs2, imm, vm   # vd[i] = imm - vs2[i]

12.2. Vector Widening Integer Add/Subtract

The widening add/subtract instructions are provided in both signed and unsigned variants, depending on
whether the narrower source operands are �rst sign- or zero-extended before forming the double-width sum.

# Widening unsigned integer add/subtract, 2*SEW = SEW +/- SEW 
vwaddu.vv  vd, vs2, vs1, vm  # vector-vector 
vwaddu.vx  vd, vs2, rs1, vm  # vector-scalar 
vwsubu.vv  vd, vs2, vs1, vm  # vector-vector 
vwsubu.vx  vd, vs2, rs1, vm  # vector-scalar 
 
# Widening signed integer add/subtract, 2*SEW = SEW +/- SEW 
vwadd.vv  vd, vs2, vs1, vm  # vector-vector 
vwadd.vx  vd, vs2, rs1, vm  # vector-scalar 
vwsub.vv  vd, vs2, vs1, vm  # vector-vector 
vwsub.vx  vd, vs2, rs1, vm  # vector-scalar 
 
# Widening unsigned integer add/subtract, 2*SEW = 2*SEW +/- SEW 
vwaddu.wv  vd, vs2, vs1, vm  # vector-vector 
vwaddu.wx  vd, vs2, rs1, vm  # vector-scalar 
vwsubu.wv  vd, vs2, vs1, vm  # vector-vector 
vwsubu.wx  vd, vs2, rs1, vm  # vector-scalar 
 
# Widening signed integer add/subtract, 2*SEW = 2*SEW +/- SEW 
vwadd.wv  vd, vs2, vs1, vm  # vector-vector 
vwadd.wx  vd, vs2, rs1, vm  # vector-scalar 
vwsub.wv  vd, vs2, vs1, vm  # vector-vector 
vwsub.wx  vd, vs2, rs1, vm  # vector-scalar

An integer value can be doubled in width using the widening add instructions with a scalar operand of x0. Can de�ne assembly
pseudoinstructions vwcvt.x.x.v vd,vs,vm = vwadd.vx vd,vs,x0,vm and vwcvtu.x.x.v vd,vs,vm = vwaddu.vx
vd,vs,x0,vm.



12.3. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions

To support multi-word integer arithmetic, instructions that operate on a carry bit are provided. For each oper-
ation (add or subtract), two instructions are provided: one to provide the result (SEW width), and the second
to generate the carry output (single bit encoded as a mask boolean).

These instructions are encoded as unmasked instructions (vm=1) and operate on all body elements. Encod-
ings corresponding to the masked versions (vm=0) of these instructions are reserved.

The carry inputs and outputs are represented using the mask register layout as described in Section Mask
Register Layout. Due to encoding constraints, the carry input must come from the implicit v0 register, but car-
ry outputs can be written to any vector register that respects the source/destination overlap restrictions
below.

 # Produce sum with carry. 
 
# vd[i] = vs2[i] + vs1[i] + v0[i].LSB 
 vadc.vvm   vd, vs2, vs1, v0  # Vector-vector 
 
 # vd[i] = vs2[i] + x[rs1] + v0[i].LSB 
 vadc.vxm   vd, vs2, rs1, v0  # Vector-scalar 
 
 # vd[i] = vs2[i] + imm + v0[i].LSB 
 vadc.vim   vd, vs2, imm, v0  # Vector-immediate 
 
 # Produce carry out in mask register format 
 
# vd[i] = carry_out(vs2[i] + vs1[i] + v0[i].LSB) 
 vmadc.vvm   vd, vs2, vs1, v0  # Vector-vector 
 
 # vd[i] = carry_out(vs2[i] + x[rs1] + v0[i].LSB) 
 vmadc.vxm   vd, vs2, rs1, v0  # Vector-scalar 
 
 # vd[i] = carry_out(vs2[i] + imm + v0[i].LSB) 
 vmadc.vim   vd, vs2, imm, v0  # Vector-immediate

Because implementing a carry propagation requires executing two instructions with unchanged inputs, de-
structive accumulations will require an additional move to obtain correct results.

  # Example multi-word arithmetic sequence, accumulating into v4 
  vmadc.vvm v1, v4, v8, v0  # Get carry into temp register v1 
  vadc.vvm v4, v4, v8, v0   # Calc new sum 
  vmcpy.m v0, v1             # Move temp carry into v0 for next word

The subtract with borrow instruction vsbc performs the equivalent function to support long word arithmetic
for subtraction. There are no subtract with immediate instructions.



 # Produce difference with borrow. 
 
# vd[i] = vs2[i] - vs1[i] - v0[i].LSB 
 vsbc.vvm   vd, vs2, vs1, v0  # Vector-vector 
 
 # vd[i] = vs2[i] - x[rs1] - v0[i].LSB 
 vsbc.vxm   vd, vs2, rs1, v0  # Vector-scalar 
 
 # Produce borrow out in mask register format 
 
 # vd[i] = borrow_out(vs2[i] - vs1[i] - v0[i].LSB) 
 vmsbc.vvm   vd, vs2, vs1, v0  # Vector-vector 
 
 # vd[i] = borrow_out(vs2[i] - x[rs1] - v0[i].LSB) 
 vmsbc.vxm   vd, vs2, rs1, v0  # Vector-scalar

For vmsbc, the borrow is de�ned to be 1 iff the difference, prior to truncation, is negative.

For vadc and vsbc, an illegal instruction exception is raised if the destination vector register is v0 and LMUL
> 1.

This constraint corresponds to the constraint on masked vector operations that overwrite the mask register.

For vmadc and vmsbc, an illegal instruction exception is raised if the destination vector register overlaps a
source vector register group.

12.4. Vector Bitwise Logical Instructions

# Bitwise logical operations. 
vand.vv vd, vs2, vs1, vm   # Vector-vector 
vand.vx vd, vs2, rs1, vm   # vector-scalar 
vand.vi vd, vs2, imm, vm   # vector-immediate 
 
vor.vv vd, vs2, vs1, vm    # Vector-vector 
vor.vx vd, vs2, rs1, vm    # vector-scalar 
vor.vi vd, vs2, imm, vm    # vector-immediate 
 
vxor.vv vd, vs2, vs1, vm    # Vector-vector 
vxor.vx vd, vs2, rs1, vm    # vector-scalar 
vxor.vi vd, vs2, imm, vm    # vector-immediate

With an immediate of -1, scalar-immediate forms of the vxor instruction provide a bitwise NOT operation. This can be provided as
an assembler pseudoinstruction vnot.v.

12.5. Vector Single-Width Bit Shift Instructions

A full complement of vector shift instructions are provided, including logical shift left, and logical (zero-ex-
tending) and arithmetic (sign-extending) shift right.



# Bit shift operations 
vsll.vv vd, vs2, vs1, vm   # Vector-vector 
vsll.vx vd, vs2, rs1, vm   # vector-scalar 
vsll.vi vd, vs2, imm, vm   # vector-immediate 
 
vsrl.vv vd, vs2, vs1, vm   # Vector-vector 
vsrl.vx vd, vs2, rs1, vm   # vector-scalar 
vsrl.vi vd, vs2, imm, vm   # vector-immediate 
 
vsra.vv vd, vs2, vs1, vm   # Vector-vector 
vsra.vx vd, vs2, rs1, vm   # vector-scalar 
vsra.vi vd, vs2, imm, vm   # vector-immediate

Only the low lg2(SEW) bits are read to obtain the shift amount.

The immediate is treated as an unsigned shift amount, with a maximum shift amount of 31.

12.6. Vector Narrowing Integer Right Shift Instructions

The narrowing right shifts extract a smaller �eld from a wider operand and have both zero-extending (srl)
and sign-extending (sra) forms. The shift amount can come from a vector or a scalar x register or a 5-bit im-
mediate. The low lg2(2*SEW) bits of the vector or scalar shift amount value are used (e.g., the low 6 bits for a
SEW=64-bit to SEW=32-bit narrowing operation). The unsigned immediate form supports shift amounts up to
31 only.

 # Narrowing shift right logical, SEW = (2*SEW) >> SEW 
 vnsrl.vv vd, vs2, vs1, vm   # vector-vector 
 vnsrl.vx vd, vs2, rs1, vm   # vector-scalar 
 vnsrl.vi vd, vs2, imm, vm   # vector-immediate 
 
 # Narrowing shift right arithmetic, SEW = (2*SEW) >> SEW 
 vnsra.vv vd, vs2, vs1, vm   # vector-vector 
 vnsra.vx vd, vs2, rs1, vm   # vector-scalar 
 vnsra.vi vd, vs2, imm, vm   # vector-immediate

It could be useful to add support for n4 variants, where the destination is 1/4 width of source.

12.7. Vector Integer Comparison Instructions

The following integer compare instructions write 1 to the destination mask register element if the comparison
evaluates to true, and 0 otherwise. The destination mask vector is always held in a single vector register, with
a layout of elements as described in Section Mask Register Layout.



# Set if equal 
vmseq.vv vd, vs2, vs1, vm  # Vector-vector 
vmseq.vx vd, vs2, rs1, vm  # vector-scalar 
vmseq.vi vd, vs2, imm, vm  # vector-immediate 
 
# Set if not equal 
vmsne.vv vd, vs2, vs1, vm  # Vector-vector 
vmsne.vx vd, vs2, rs1, vm  # vector-scalar 
vmsne.vi vd, vs2, imm, vm  # vector-immediate 
 
# Set if less than, unsigned 
vmsltu.vv vd, vs2, vs1, vm  # Vector-vector 
vmsltu.vx vd, vs2, rs1, vm  # Vector-scalar 
 
# Set if less than, signed 
vmslt.vv vd, vs2, vs1, vm  # Vector-vector 
vmslt.vx vd, vs2, rs1, vm  # vector-scalar 
 
# Set if less than or equal, unsigned 
vmsleu.vv vd, vs2, vs1, vm   # Vector-vector 
vmsleu.vx vd, vs2, rs1, vm   # vector-scalar 
vmsleu.vi vd, vs2, imm, vm   # Vector-immediate 
 
# Set if less than or equal, signed 
vmsle.vv vd, vs2, vs1, vm  # Vector-vector 
vmsle.vx vd, vs2, rs1, vm  # vector-scalar 
vmsle.vi vd, vs2, imm, vm  # vector-immediate 
 
# Set if greater than, unsigned 
vmsgtu.vx vd, vs2, rs1, vm   # Vector-scalar 
vmsgtu.vi vd, vs2, imm, vm   # Vector-immediate 
 
# Set if greater than, signed 
vmsgt.vx vd, vs2, rs1, vm    # Vector-scalar 
vmsgt.vi vd, vs2, imm, vm    # Vector-immediate 
 
# Following two instructions are not provided directly 
# Set if greater than or equal, unsigned 
# vmsgeu.vx vd, vs2, rs1, vm    # Vector-scalar 
# Set if greater than or equal, signed 
# vmsge.vx vd, vs2, rs1, vm    # Vector-scalar

The following table indicates how all comparisons are implemented in native machine code.



Comparison      Assembler Mapping             Assembler Pseudoinstruction 
 
va < vb         vmslt{u}.vv vd, va, vb, vm 
va <= vb        vmsle{u}.vv vd, va, vb, vm 
va > vb         vmslt{u}.vv vd, vb, va, vm    vmsgt{u}.vv vd, va, vb, vm 
va >= vb        vmsle{u}.vv vd, vb, va, vm    vmsge{u}.vv vd, va, vb, vm 
 
va < x          vmslt{u}.vx vd, va, x, vm 
va <= x         vmsle{u}.vx vd, va, x, vm 
va > x          vmsgt{u}.vx vd, va, x, vm 
va >= x         see below 
 
va < i          vmsle{u}.vi vd, va, i-1, vm    vmslt{u}.vi vd, va, i, vm 
va <= i         vmsle{u}.vi vd, va, i, vm 
va > i          vmsgt{u}.vi vd, va, i, vm 
va >= i         vmsgt{u}.vi vd, va, i-1, vm    vmsge{u}.vi vd, va, i, vm 
 
va, vb vector register groups 
x      scalar integer register 
i      immediate

The immediate forms of vmslt{u}.vi are not provided as the immediate value can be decreased by 1 and the vmsle{u}.vi vari-
ants used instead. The vmsle.vi range is -16 to 15, resulting in an effective vmslt.vi range of -15 to 16. The vmsleu.vi range is
0 to 15 (and (~0)-15 to ~0), giving an effective vmsltu.vi range of 1 to 16 (Note, vmsltu.vi with immediate 0 is not useful as it
is always false). Similarly, vmsge{u}.vi is not provided and the comparison is implemented using vmsgt{u}.vi with the immedi-
ate decremented by one. The resulting effective vmsge.vi range is -15 to 16, and the resulting effective vmsgeu.vi range is 1 to
16 (Note, vmsgeu.vi with immediate 0 is not useful as it is always true).
The vmsgt forms for register scalar and immediates are provided to allow a single comparison instruction to provide the correct po-
larity of mask value without using additional mask logical instructions.

To reduce encoding space, the vmsge{u}.vx form is not directly provided, and so the va ≥ x case requires
special treatment.

The vmsge{u}.vx could potentially be encoded in a non-orthogonal way under the unused OPIVI variant of vmslt{u}. These
would be the only instructions in OPIVI that use a scalar `x`register however. Alternatively, a further two funct6 encodings could be
used, but these would have a different operand format (writes to mask register) than others in the same group of 8 funct6 encod-
ings. The current PoR is to omit these instructions and to synthesize where needed as described below.

The vmsge{u}.vx operation can be synthesized by reducing the value of x by 1 and using the vmsgt{u}.vx
instruction, when it is known that this will not underflow the representation in x.

Sequences to synthesize `vmsge{u}.vx` instruction 
 
va >= x,  x > minimum 
 
   addi t0, x, -1; vmsgt{u}.vx vd, va, t0, vm

The above sequence will usually be the most ef�cient implementation, but assembler pseudoinstructions can
be provided for cases where the range of x is unknown.



unmasked va >= x 
 
  pseudoinstruction: vmsge{u}.vx vd, va, x 
  expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd 
 
masked va >= x, vd != v0 
 
  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t 
  expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0 
 
masked va >= x, any vd 
 
  pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt 
  expansion: vmslt{u}.vx vt, va, x;  vmandnot.mm vd, vd, vt 
 
  The vt argument to the pseudoinstruction must name a temporary vector register that is 
  not same as vd and which will be clobbered by the pseudoinstruction

Comparisons effectively AND in the mask, e.g,

    # (a < b) && (b < c) in two instructions 
    vmslt.vv    v0, va, vb        # All body elements written 
    vmslt.vv    v0, vb, vc, v0.t  # Only update at set mask

12.8. Vector Integer Min/Max Instructions

Signed and unsigned integer minimum and maximum instructions are supported.

# Unsigned minimum 
vminu.vv vd, vs2, vs1, vm   # Vector-vector 
vminu.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Signed minimum 
vmin.vv vd, vs2, vs1, vm   # Vector-vector 
vmin.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Unsigned maximum 
vmaxu.vv vd, vs2, vs1, vm   # Vector-vector 
vmaxu.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Signed maximum 
vmax.vv vd, vs2, vs1, vm   # Vector-vector 
vmax.vx vd, vs2, rs1, vm   # vector-scalar

12.9. Vector Single-Width Integer Multiply Instructions

The single-width multiply instructions perform a SEW-bit*SEW-bit multiply and return an SEW-bit-wide result.
The mulh versions write the high word of the product to the destination register.



# Signed multiply, returning low bits of product 
vmul.vv vd, vs2, vs1, vm   # Vector-vector 
vmul.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Signed multiply, returning high bits of product 
vmulh.vv vd, vs2, vs1, vm   # Vector-vector 
vmulh.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Unsigned multiply, returning high bits of product 
vmulhu.vv vd, vs2, vs1, vm   # Vector-vector 
vmulhu.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Signed(vs2)-Unsigned multiply, returning high bits of product 
vmulhsu.vv vd, vs2, vs1, vm   # Vector-vector 
vmulhsu.vx vd, vs2, rs1, vm   # vector-scalar

There is no vmulhus opcode to return high half of unsigned-vector * signed-scalar product.
The current vmulh* opcodes perform simple fractional multiplies, but with no option to scale, round, and/or saturate the result. Can
consider changing de�nition of vmulh, vmulhu, vmulhsu to use vxrm rounding mode when discarding low half of product. There is
no possibility of overflow in this case.

12.10. Vector Integer Divide Instructions

The divide and remainder instructions are equivalent to the RISC-V standard scalar integer multiply/divides,
with the same results for extreme inputs.

    # Unsigned divide. 
    vdivu.vv vd, vs2, vs1, vm   # Vector-vector 
    vdivu.vx vd, vs2, rs1, vm   # vector-scalar 
 
    # Signed divide 
    vdiv.vv vd, vs2, vs1, vm   # Vector-vector 
    vdiv.vx vd, vs2, rs1, vm   # vector-scalar 
 
    # Unsigned remainder 
    vremu.vv vd, vs2, vs1, vm   # Vector-vector 
    vremu.vx vd, vs2, rs1, vm   # vector-scalar 
 
    # Signed remainder 
    vrem.vv vd, vs2, vs1, vm   # Vector-vector 
    vrem.vx vd, vs2, rs1, vm   # vector-scalar

The decision to include integer divide and remainder was contentious. The argument in favor is that without a standard instruction,
software would have to pick some algorithm to perform the operation, which would likely perform poorly on some microarchitec-
tures versus others.
There is no instruction to perform a "scalar divide by vector" operation.

12.11. Vector Widening Integer Multiply Instructions

The widening integer multiply instructions return the full 2*SEW-bit product from an SEW-bit*SEW-bit
multiply.



# Widening signed-integer multiply 
vwmul.vv  vd, vs2, vs1, vm# vector-vector 
vwmul.vx  vd, vs2, rs1, vm # vector-scalar 
 
# Widening unsigned-integer multiply 
vwmulu.vv vd, vs2, vs1, vm # vector-vector 
vwmulu.vx vd, vs2, rs1, vm # vector-scalar 
 
# Widening signed-unsigned integer multiply 
vwmulsu.vv vd, vs2, vs1, vm # vector-vector 
vwmulsu.vx vd, vs2, rs1, vm # vector-scalar

12.12. Vector Single-Width Integer Multiply-Add Instructions

The integer multiply-add instructions are destructive and are provided in two forms, one that overwrites the
addend or minuend (vmacc, vnmsac) and one that overwrites the �rst multiplicand (vmadd, vnmsub).

The low half of the product is added or subtracted from the third operand.

"sac" is intended to be read as "subtract from accumulator". The opcode is "vnmsac" to match the (unfortunately counterintuitive)
floating-point fnmsub instruction de�nition. Similarly for the "vnmsub" opcode.

# Integer multiply-add, overwrite addend 
vmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vmacc.vx vd, rs1, vs2, vm    # vd[i] = +(x[rs1] * vs2[i]) + vd[i] 
 
# Integer multiply-sub, overwrite minuend 
vnmsac.vv vd, vs1, vs2, vm    # vd[i] = -(vs1[i] * vs2[i]) + vd[i] 
vnmsac.vx vd, rs1, vs2, vm    # vd[i] = -(x[rs1] * vs2[i]) + vd[i] 
 
# Integer multiply-add, overwrite multiplicand 
vmadd.vv vd, vs1, vs2, vm    # vd[i] = (vs1[i] * vd[i]) + vs2[i] 
vmadd.vx vd, rs1, vs2, vm    # vd[i] = (x[rs1] * vd[i]) + vs2[i] 
 
# Integer multiply-sub, overwrite multiplicand 
vnmsub.vv vd, vs1, vs2, vm    # vd[i] = -(vs1[i] * vd[i]) + vs2[i] 
vnmsub.vx vd, rs1, vs2, vm    # vd[i] = -(x[rs1] * vd[i]) + vs2[i]

12.13. Vector Widening Integer Multiply-Add Instructions

The widening integer multiply-add instructions add a SEW-bit*SEW-bit multiply result to (from) a 2*SEW-bit
value and produce a 2*SEW-bit result. All combinations of signed and unsigned multiply operands are
supported.



# Widening unsigned-integer multiply-add, overwrite addend 
vwmaccu.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vwmaccu.vx vd, rs1, vs2, vm    # vd[i] = +(x[rs1] * vs2[i]) + vd[i] 
 
# Widening signed-integer multiply-add, overwrite addend 
vwmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vwmacc.vx vd, rs1, vs2, vm    # vd[i] = +(x[rs1] * vs2[i]) + vd[i] 
 
# Widening signed-unsigned-integer multiply-sub, overwrite addend 
vwmaccsu.vv vd, vs1, vs2, vm    # vd[i] = +(signed(vs1[i]) * unsigned(vs2[i])) + vd[i] 
vwmaccsu.vx vd, rs1, vs2, vm    # vd[i] = +(signed(x[rs1]) * unsigned(vs2[i])) + vd[i] 
 
# Widening unsigned-signed-integer multiply-sub, overwrite addend 
vwmaccus.vx vd, rs1, vs2, vm    # vd[i] = +(unsigned(x[rs1]) * signed(vs2[i])) + vd[i]

12.14. Vector Integer Merge and Move Instructions

The vector integer merge instruction combines two source operands based on the mask �eld. Unlike regular
arithmetic instructions, the merge operates on all body elements (i.e., the set of elements from vstart up to
the current vector length in vl).

When the operation is masked (vm=0), the instructions combine two sources as follows. At elements where
the mask value is zero, the �rst operand is copied to the destination element, otherwise the second operand
is copied to the destination element. The �rst operand is always a vector register group speci�ed by vs2. The
second operand is a vector register group speci�ed by vs1 or a scalar x register speci�ed by rs1 or a 5-bit
sign-extended immediate.

# Masked  operations, where vm=0 
vmerge.vvm vd, vs2, vs1, v0  # vd[i] = v0[i].LSB ? vs1[i] : vs2[i] 
vmerge.vxm vd, vs2, rs1, v0  # vd[i] = v0[i].LSB ? x[rs1] : vs2[i] 
vmerge.vim vd, vs2, imm, v0  # vd[i] = v0[i].LSB ? imm    : vs2[i]

When the operation is unmasked (vm=1), the �rst operand speci�er (vs2) in the instruction encoding must
contain v0, and any other vector register number in vs2 is reserved. This instruction copies the vs1, rs1, or
immediate operand to the �rst vl locations of the destination vector.

Microarchitectures can recognize this form to avoid unnecessary vector register �le accesses from the �rst vector operand.

# Unmasked  operations, where vm=1 
vmv.v.v vd, vs1 # vd[i] = vs1[i] 
vmv.v.x vd, rs1 # vd[i] = rs1 
vmv.v.i vd, imm # vd[i] = imm

Mask values can be widened into SEW-width elements using a sequence vmv.v.i vd, 0; vmerge.vim vd, vd, 1, v0.



13. Vector Fixed-Point Arithmetic Instructions

A set of vector arithmetic instructions are provided to support �xed-point arithmetic.

An N-bit element can hold two’s-complement signed integers in the range -2N-1… +2N-1-1, and unsigned inte-
gers in the range 0 …  +2N-1. The �xed-point instructions help preserve precision in narrow operands by sup-
porting scaling and rounding, and can handle overflow by saturating results into the destination format range.

The widening integer operations described above can also be used to remove the possibility of overflow.

13.1. Vector Single-Width Saturating Add and Subtract

Saturating forms of integer add and subtract are provided, for both signed and unsigned integers. If the result
would overflow the destination, the result is replaced with the closest representable value, and the vxsat bit
is set.

# Saturating adds of unsigned integers. 
vsaddu.vv vd, vs2, vs1, vm   # Vector-vector 
vsaddu.vx vd, vs2, rs1, vm   # vector-scalar 
vsaddu.vi vd, vs2, imm, vm   # vector-immediate 
 
# Saturating adds of signed integers. 
vsadd.vv vd, vs2, vs1, vm   # Vector-vector 
vsadd.vx vd, vs2, rs1, vm   # vector-scalar 
vsadd.vi vd, vs2, imm, vm   # vector-immediate 
 
# Saturating subtract of unsigned integers. 
vssubu.vv vd, vs2, vs1, vm   # Vector-vector 
vssubu.vx vd, vs2, rs1, vm   # vector-scalar 
 
# Saturating subtract of signed integers. 
vssub.vv vd, vs2, vs1, vm   # Vector-vector 
vssub.vx vd, vs2, rs1, vm   # vector-scalar

13.2. Vector Single-Width Averaging Add and Subtract

The averaging add and subtract instructions right shift the result by one bit and round off the result according
to the setting in vxrm. There can be no overflow in the result.



# For vrxm=rnu, round = 1 
 
# Averaging add 
# result = (src1 + src2 + round) >> 1; 
 
# Averaging adds of integers. 
vaadd.vv vd, vs2, vs1, vm   # Vector-vector 
vaadd.vx vd, vs2, rs1, vm   # vector-scalar 
vaadd.vi vd, vs2, imm, vm   # vector-immediate 
 
# Averaging subtract 
# result = (src1 - src2 + round) >> 1; 
 
# Averaging subtract of integers. 
vasub.vv vd, vs2, vs1, vm   # Vector-vector 
vasub.vx vd, vs2, rs1, vm   # vector-scalar

13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation

The signed fractional multiply instruction produces a 2*SEW product of the two SEW inputs, then shifts the
result right by SEW-1 bits, rounding these bits according to vxrm, then saturates the result to �t into SEW bits.
If the result causes saturation, the vxsat bit is set.

# Signed saturating and rounding fractional multiply 
vsmul.vv vd, vs2, vs1, vm  # vd[i] = clip((vs2[i]*vs1[i]+round)>>(SEW-1)) 
vsmul.vx vd, vs2, rs1, vm  # vd[i] = clip((vs2[i]*x[rs1]+round)>>(SEW-1))

When multiplying two N-bit signed numbers, the largest magnitude is obtained for -2N-1 * -2N-1 producing a result +22N-2, which has
a single (zero) sign bit when held in 2N bits. All other products have two sign bits in 2N bits. To retain greater precision in N result
bits, the product is shifted right by one bit less than N, saturating the largest magnitude result but increasing result precision by one
bit for all other products.
Considering adding vxrm-controlled rounding to vmulhu, vmulhsu, and vmulh to further support �xed-point. These would not have
saturation.

13.4. Vector Widening Saturating Scaled Multiply-Add

The widening saturating scaled multiply-add instructions perform an SEW-bit * SEW-bit multiply to yield a
2*SEW-bit product. The product is then right-shifted by SEW/2 bits with the shifted bits rounded off according
to vxrm, and the rounded product is added to a 2*SEW-bit destination accumulator, with saturation if the re-
sult would overflow the destination accumulator. The vxsat bit is set if any overflow occurs.

If any multiplier operand is signed, then the result is treated as a signed value for overflow/saturation. If both
multiplier operands are unsigned then the result is treated as an unsigned value for overflow/saturation.

SEW Product Width Rounded Product Accumulator Guard Bits
8 16 12 16 4
16 32 24 32 8
32 64 48 64 16



# Widening unsigned-integer scaled multiply-accumulate 
vwsmaccu.vv vd, vs1, vs2, vm # vd[i] = clipu((+(vs1[i]*vs2[i]+round)>>SEW/2)+vd[i]) 
vwsmaccu.vx vd, rs1, vs2, vm # vd[i] = clipu((+(x[rs1]*vs2[i]+round)>>SEW/2)+vd[i]) 
 
# Widening signed-integer scaled multiply-accumulate 
vwsmacc.vv vd, vs1, vs2, vm  # vd[i] = clip((+(vs1[i]*vs2[i]+round)>>SEW/2)+vd[i]) 
vwsmacc.vx vd, rs1, vs2, vm  # vd[i] = clip((+(x[rs1]*vs2[i]+round)>>SEW/2)+vd[i]) 
 
# Widening signed-unsigned-integer scaled multiply-accumulate 
vwsmaccsu.vv vd, vs1, vs2, vm 
             # vd[i] = clip(-((signed(vs1[i])*unsigned(vs2[i])+round)>>SEW/2)+vd[i]) 
vwsmaccsu.vx vd, rs1, vs2, vm 
             # vd[i] = clip(-((signed(x[rs1])*unsigned(vs2[i])+round)>>SEW/2)+vd[i]) 
 
# Widening unsigned-signed-integer scaled  multiply-accumulate 
vwsmaccus.vx vd, rs1, vs2, vm 
             # vd[i] = clip(-((unsigned(x[rs1])*signed(vs2[i])+round)>>SEW/2)+vd[i]) 
 
# For vxrm=rnu, round = ( 1 << (SEW/2-1))

An arbitrary scaling/shift amount would be more flexible but would require a fourth source operand.

13.5. Vector Single-Width Scaling Shift Instructions

These instructions shift the input value right, and round off the shifted out bits according to vxrm. The scaling
right shifts have both zero-extending (vssrl) and sign-extending (vssra) forms. The low lg2(SEW) bits of the
vector or scalar shift amount value are used. The immediate form supports shift amounts up to 31 only.

 # For vxrm=rnu, round = 1 << (src2-1), where src2 is vs1[i], x[rs1], imm 
 # Scaling shift right logical 
 vssrl.vv vd, vs2, vs1, vm   # vd[i] = ((vs2[i] + round)>>vs1[i]) 
 vssrl.vx vd, vs2, rs1, vm   # vd[i] = ((vs2[i] + round)>>x[rs1]) 
 vssrl.vi vd, vs2, imm, vm   # vd[i] = ((vs2[i] + round)>>imm) 
 
 # Scaling shift right arithmetic 
 vssra.vv vd, vs2, vs1, vm   # vd[i] = ((vs2[i] + round)>>vs1[i]) 
 vssra.vx vd, vs2, rs1, vm   # vd[i] = ((vs2[i] + round)>>x[rs1]) 
 vssra.vi vd, vs2, imm, vm   # vd[i] = ((vs2[i] + round)>>imm)

13.6. Vector Narrowing Fixed-Point Clip Instructions

The vnclip instructions are used to pack a �xed-point value into a narrower destination. The instructions
support rounding, scaling, and saturation into the �nal destination format.

The second argument (vector element, scalar value, immediate value) gives the amount to right shift the
source as in the narrowing shift instructions, which provides the scaling. The low lg2(2*SEW) bits of the vector
or scalar shift amount value are used (e.g., the low 6 bits for a SEW=64-bit to SEW=32-bit narrowing opera-
tion). The immediate form supports shift amounts up to 31 only.



 # Narrowing unsigned clip 
 vnclipu.vv vd, vs2, vs1, vm   # vector-vector 
 vnclipu.vx vd, vs2, rs1, vm   # vector-scalar 
 vnclipu.vi vd, vs2, imm, vm   # vector-immediate 
 
# Narrowing signed clip,  vd[i] = clip(round(vs2[i] + rnd) >> vs1[i]) 
#                          SEW           2*SEW                 SEW 
 vnclip.vv vd, vs2, vs1, vm   # vector-vector 
 vnclip.vx vd, vs2, rs1, vm   # vector-scalar 
 vnclip.vi vd, vs2, imm, vm   # vector-immediate

For vnclipu/vnclip, the rounding mode is speci�ed in the vxrm CSR. Rounding occurs around the least-
signi�cant bit of the destination and before saturation.

For vnclipu, the shifted rounded source value is treated as an unsigned integer and saturates if the result
would overflow the destination viewed as an unsigned integer.

For vnclip, the shifted rounded source value is treated as a signed integer and saturates if the result would
overflow the destination viewed as a signed integer.

If any destination element is saturated, the vxsat bit is set in the vxsat register.



14. Vector Floating-Point Instructions

The standard vector floating-point instructions treat 16-bit, 32-bit, 64-bit, and 128-bit elements as IEEE-
754/2008-compatible values. If the current SEW does not correspond to a supported IEEE floating-point
type, an illegal instruction exception is raised.

The floating-point element widths that are supported depend on the platform.
Platforms supporting 16-bit half-precision floating-point values will also have to implement scalar half-precision floating-point sup-
port in the f registers.

The vector floating-point instructions have the same behavior as the scalar floating-point instructions with re-
gard to NaNs.

Scalar values for vector-scalar operations can be sourced from the standard scalar f registers.

Scalar floating-point values will be sourced from the integer x registers in the proposed Z�nx variant.

14.1. Vector Floating-Point Exception Flags

A vector floating-point exception at any active floating-point element sets the standard FP exception flags in
the fflags register. Inactive elements do not set FP exception flags.

14.2. Vector Single-Width Floating-Point Add/Subtract Instructions

    # Floating-point add 
    vfadd.vv vd, vs2, vs1, vm   # Vector-vector 
    vfadd.vf vd, vs2, rs1, vm   # vector-scalar 
 
    # Floating-point subtract 
    vfsub.vv vd, vs2, vs1, vm   # Vector-vector 
    vfsub.vf vd, vs2, rs1, vm   # Vector-scalar vd[i] = vs2[i] - f[rs1] 
    vfrsub.vf vd, vs2, rs1, vm  # Scalar-vector vd[i] = f[rs1] - vs2[i]

14.3. Vector Widening Floating-Point Add/Subtract Instructions

# Widening FP add/subtract, 2*SEW = SEW +/- SEW 
vfwadd.vv vd, vs2, vs1, vm  # vector-vector 
vfwadd.vf vd, vs2, rs1, vm  # vector-scalar 
vfwsub.vv vd, vs2, vs1, vm  # vector-vector 
vfwsub.vf vd, vs2, rs1, vm  # vector-scalar 
 
# Widening FP add/subtract, 2*SEW = 2*SEW +/- SEW 
vfwadd.wv  vd, vs2, vs1, vm  # vector-vector 
vfwadd.wf  vd, vs2, rs1, vm  # vector-scalar 
vfwsub.wv  vd, vs2, vs1, vm  # vector-vector 
vfwsub.wf  vd, vs2, rs1, vm  # vector-scalar

14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions



    # Floating-point multiply 
    vfmul.vv vd, vs2, vs1, vm   # Vector-vector 
    vfmul.vf vd, vs2, rs1, vm   # vector-scalar 
 
    # Floating-point divide 
    vfdiv.vv vd, vs2, vs1, vm   # Vector-vector 
    vfdiv.vf vd, vs2, rs1, vm   # vector-scalar 
 
    # Reverse floating-point divide vector = scalar / vector 
    vfrdiv.vf vd, vs2, rs1, vm  # scalar-vector, vd[i] = f[rs1]/vs2[i]

14.5. Vector Widening Floating-Point Multiply

# Widening floating-point multiply 
vfwmul.vv    vd, vs2, vs1, vm # vector-vector 
vfwmul.vf    vd, vs2, rs1, vm # vector-scalar

14.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions

All four varieties of fused multiply-add are provided, and in two destructive forms that overwrite one of the
operands, either the addend or the �rst multiplicand.

# FP multiply-accumulate, overwrites addend 
vfmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vfmacc.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) + vd[i] 
 
# FP negate-(multiply-accumulate), overwrites subtrahend 
vfnmacc.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) - vd[i] 
vfnmacc.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) - vd[i] 
 
# FP multiply-subtract-accumulator, overwrites subtrahend 
vfmsac.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) - vd[i] 
vfmsac.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) - vd[i] 
 
# FP negate-(multiply-subtract-accumulator), overwrites minuend 
vfnmsac.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) + vd[i] 
vfnmsac.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) + vd[i] 
 
# FP multiply-add, overwrites multiplicand 
vfmadd.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vd[i]) + vs2[i] 
vfmadd.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vd[i]) + vs2[i] 
 
# FP negate-(multiply-add), overwrites multiplicand 
vfnmadd.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vd[i]) - vs2[i] 
vfnmadd.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vd[i]) - vs2[i] 
 
# FP multiply-sub, overwrites multiplicand 
vfmsub.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vd[i]) - vs2[i] 
vfmsub.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vd[i]) - vs2[i] 
 
# FP negate-(multiply-sub), overwrites multiplicand 
vfnmsub.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vd[i]) + vs2[i] 
vfnmsub.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vd[i]) + vs2[i]

It would be possible to use the two unused rounding modes in the scalar FP FMA encoding to provide a few non-destructive FMAs.
However, this would be the only maskable operation with three inputs and separate output.



14.7. Vector Widening Floating-Point Fused Multiply-Add Instructions

The widening floating-point fused multiply-add instructions all overwrite the wide addend with the result. The
multiplier inputs are all SEW wide, while the addend and destination is 2*SEW bits wide.

# FP widening multiply-accumulate, overwrites addend 
vfwmacc.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) + vd[i] 
vfwmacc.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) + vd[i] 
 
# FP widening negate-(multiply-accumulate), overwrites addend 
vfwnmacc.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) - vd[i] 
vfwnmacc.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) - vd[i] 
 
# FP widening multiply-subtract-accumulator, overwrites addend 
vfwmsac.vv vd, vs1, vs2, vm    # vd[i] = +(vs1[i] * vs2[i]) - vd[i] 
vfwmsac.vf vd, rs1, vs2, vm    # vd[i] = +(f[rs1] * vs2[i]) - vd[i] 
 
# FP widening negate-(multiply-subtract-accumulator), overwrites addend 
vfwnmsac.vv vd, vs1, vs2, vm   # vd[i] = -(vs1[i] * vs2[i]) + vd[i] 
vfwnmsac.vf vd, rs1, vs2, vm   # vd[i] = -(f[rs1] * vs2[i]) + vd[i]

14.8. Vector Floating-Point Square-Root Instruction

This is a unary vector-vector instruction.

    # Floating-point square root 
    vfsqrt.v vd, vs2, vm   # Vector-vector square root

14.9. Vector Floating-Point MIN/MAX Instructions

The vector floating-point vfmin and vfmax instructions have the same behavior as the corresponding scalar
floating-point instructions in version 2.2 of the RISC-V F/D/Q extension.

    # Floating-point minimum 
    vfmin.vv vd, vs2, vs1, vm   # Vector-vector 
    vfmin.vf vd, vs2, rs1, vm   # vector-scalar 
 
    # Floating-point maximum 
    vfmax.vv vd, vs2, vs1, vm   # Vector-vector 
    vfmax.vf vd, vs2, rs1, vm   # vector-scalar

14.10. Vector Floating-Point Sign-Injection Instructions

Vector versions of the scalar sign-injection instructions. The result takes all bits except the sign bit from the
vector vs2 operands.

    vfsgnj.vv vd, vs2, vs1, vm   # Vector-vector 
    vfsgnj.vf vd, vs2, rs1, vm   # vector-scalar 
 
    vfsgnjn.vv vd, vs2, vs1, vm   # Vector-vector 
    vfsgnjn.vf vd, vs2, rs1, vm   # vector-scalar 
 
    vfsgnjx.vv vd, vs2, vs1, vm   # Vector-vector 
    vfsgnjx.vf vd, vs2, rs1, vm   # vector-scalar



14.11. Vector Floating-Point Compare Instructions

These vector FP compare instructions compare two source operands and write the comparison result to a
mask register. The destination mask vector is always held in a single vector register, with a layout of elements
as described in Section Mask Register Layout.

The compare instructions follow the semantics of the scalar floating-point compare instructions. vmfeq and
vmfne raise the invalid operation exception only on signaling NaN inputs. vmflt, vmfle, vmfgt, and vmfge
raise the invalid operation exception on both signaling and quiet NaN inputs.

    # Compare equal 
    vmfeq.vv vd, vs2, vs1, vm  # Vector-vector 
    vmfeq.vf vd, vs2, rs1, vm  # vector-scalar 
 
    # Compare not equal 
    vmfne.vv vd, vs2, vs1, vm  # Vector-vector 
    vmfne.vf vd, vs2, rs1, vm  # vector-scalar 
 
    # Compare less than 
    vmflt.vv vd, vs2, vs1, vm  # Vector-vector 
    vmflt.vf vd, vs2, rs1, vm  # vector-scalar 
 
    # Compare less than or equal 
    vmfle.vv vd, vs2, vs1, vm  # Vector-vector 
    vmfle.vf vd, vs2, rs1, vm  # vector-scalar 
 
    # Compare greater than 
    vmfgt.vf vd, vs2, rs1, vm  # vector-scalar 
 
    # Compare greater than or equal 
    vmfge.vf vd, vs2, rs1, vm  # vector-scalar

Comparison      Assembler Mapping             Assembler pseudoinstruction 
 
va < vb         vmflt.vv vd, va, vb, vm 
va <= vb        vmfle.vv vd, va, vb, vm 
va > vb         vmflt.vv vd, vb, va, vm    vmfgt.vv vd, va, vb, vm 
va >= vb        vmfle.vv vd, vb, va, vm    vmfge.vv vd, va, vb, vm 
 
va < f          vmflt.vf vd, va, f, vm 
va <= f         vmfle.vf vd, va, f, vm 
va > f          vmfgt.vf vd, va, f, vm 
va >= f         vmfge.vf vd, va, f, vm 
 
va, vb vector register groups 
f      scalar floating-point register

Providing all forms is necessary to correctly handle unordered comparisons for NaNs.

To help implement the C99 floating-point comparison functions, a vmford instruction is added that sets a
mask register if the arguments are ordered (i.e., neither argument is NaN). vmford raises the invalid opera-
tion exception on signaling NaNs only.

    # Are args ordered? 
    vmford.vv  vd, vs2, vs1, vm   # Vector-vector 
    vmford.vf  vd, vs2, rs1, vm   # Vector-scalar



    # Example of implementing isgreater() 
    vmford.vv v0, va, vb       # Only set where args are ordered, 
    vmfgt.vv v0, va, vb, v0.t  # so only set flags on ordered values.

14.12. Vector Floating-Point Classify Instruction

This is a unary vector-vector instruction that operates in the same way as the scalar classify instruction.

    vfclass.v vd, vs2, vm   # Vector-vector

The 10-bit mask produced by this instruction is placed in the least-signi�cant bits of the result elements. The
instruction is only de�ned for SEW=16b and above, so the result will always �t in the destination elements.

14.13. Vector Floating-Point Merge Instruction

A vector-scalar floating-point merge instruction is provided, which operates on all body elements, from vs-
tart up to the current vector length in vl regardless of mask value.

When the floating-point merge instruction is masked (vm=0), at elements where the mask value is zero, the
�rst vector operand is copied to the destination element, otherwise a scalar floating-point register value is
copied to the destination element.

vfmerge.vfm vd, vs2, rs1, v0  # vd[i] = v0[i].LSB ? f[rs1] : vs2[i]

The unmasked form (vm=1) can be used to splat a scalar f register value into all active elements of a vector.
The instruction must have the vs2 �eld set to v0, with all other values for vs2 reserved.

vfmv.v.f vd, rs1  # vd[i] = f[rs1];

In Z�nx systems, the instruction is identical to vmerge.vx.

14.14. Single-Width Floating-Point/Integer Type-Convert Instructions

Conversion operations are provided to convert to and from floating-point values and unsigned and signed in-
tegers, where both source and destination are SEW wide.

vfcvt.xu.f.v vd, vs2, vm   # Convert float to unsigned integer. 
vfcvt.x.f.v  vd, vs2, vm   # Convert float to signed integer. 
 
vfcvt.f.xu.v vd, vs2, vm   # Convert unsigned integer to float. 
vfcvt.f.x.v  vd, vs2, vm   # Convert signed integer to float.

The conversions follow the same rules on exceptional conditions as the scalar conversion instructions. The
conversions always use the dynamic rounding mode in frm.

14.15. Widening Floating-Point/Integer Type-Convert Instructions

A set of conversion instructions are provided to convert between narrower integer and floating-point
datatypes to a type of twice the width.



vfwcvt.xu.f.v vd, vs2, vm   # Convert float to double-width unsigned integer. 
vfwcvt.x.f.v  vd, vs2, vm   # Convert float to double-width signed integer. 
 
vfwcvt.f.xu.v vd, vs2, vm   # Convert unsigned integer to double-width float. 
vfwcvt.f.x.v  vd, vs2, vm   # Convert signed integer to double-width float. 
 
vfwcvt.f.f.v vd, vs2, vm   # Convert single-width float to double-width float.

A double-width IEEE floating-point value can always represent a single-width integer exactly.
A double-width IEEE floating-point value can always represent a single-width IEEE floating-point value exactly.
A full set of floating-point widening conversions are not supported as single instructions, but any widening conversion can be imple-
mented as several doubling steps with equivalent results and no additional exception flags raised.

14.16. Narrowing Floating-Point/Integer Type-Convert Instructions

A set of conversion instructions are provided to convert wider integer and floating-point datatypes to a type of
half the width.

vfncvt.xu.f.v vd, vs2, vm   # Convert double-width float to unsigned integer. 
vfncvt.x.f.v  vd, vs2, vm   # Convert double-width float to signed integer. 
 
vfncvt.f.xu.v vd, vs2, vm   # Convert double-width unsigned integer to float. 
vfncvt.f.x.v  vd, vs2, vm   # Convert double-width signed integer to float. 
 
vfncvt.f.f.v vd, vs2, vm   # Convert double-width float to single-width float.

A full set of floating-point widening conversions are not supported as single instructions. Conversions can be implemented in several
halving steps, with equivalently rounded results and with the same exception flags raised (possibly raised redundantly in multiple
steps).
An integer value can be halved in width using the narrowing integer shift instructions with a shift amount of 0.



15. Vector Reduction Operations

Vector reduction operations take a vector register group of elements and a scalar held in element 0 of a vector
register, and perform a reduction using some binary operator, to produce a scalar result in element 0 of a vec-
tor register. The scalar input and output operands are held in element 0 of a single vector register, not a vector
register group, so any vector register can be the scalar source or destination of a vector reduction regardless
of LMUL setting.

Reductions read and write the scalar operand and result into element 0 of a vector register to avoid a loss of decoupling with the
scalar processor, and to support future polymorphic use with future types not supported in the scalar unit.

Inactive elements are excluded from the reduction.

The other elements in the destination vector register ( 0 < index < VLEN/SEW) are zeroed.

If vl=0, no operation is performed and the destination register is not updated.

Traps on vector reduction instructions are always reported with a vstart of 0. Vector reduction operations
raise an illegal instruction exception if vstart is non-zero.

The assembler syntax for a reduction operation is vredop.vs, where the .vs suf�x denotes the �rst operand
is a vector register group and the second operand is a scalar stored in element 0 of a vector register.

15.1. Vector Single-Width Integer Reduction Instructions

All operands and results of single-width reduction instructions have the same SEW width. Overflows wrap
around on arithmetic sums.

    # Simple reductions, where [*] denotes all active elements: 
    vredsum.vs  vd, vs2, vs1, vm   # vd[0] =  sum( vs1[0] , vs2[*] ) 
    vredmaxu.vs vd, vs2, vs1, vm   # vd[0] = maxu( vs1[0] , vs2[*] ) 
    vredmax.vs  vd, vs2, vs1, vm   # vd[0] =  max( vs1[0] , vs2[*] ) 
    vredminu.vs vd, vs2, vs1, vm   # vd[0] = minu( vs1[0] , vs2[*] ) 
    vredmin.vs  vd, vs2, vs1, vm   # vd[0] =  min( vs1[0] , vs2[*] ) 
    vredand.vs  vd, vs2, vs1, vm   # vd[0] =  and( vs1[0] , vs2[*] ) 
    vredor.vs   vd, vs2, vs1, vm   # vd[0] =   or( vs1[0] , vs2[*] ) 
    vredxor.vs  vd, vs2, vs1, vm   # vd[0] =  xor( vs1[0] , vs2[*] )

15.2. Vector Widening Integer Reduction Instructions

The unsigned vwredsumu.vs instruction zero-extends the SEW-wide vector elements before summing them,
then adds the 2*SEW-width scalar element, and stores the result in a 2*SEW-width scalar element.

The vwredsum.vs instruction sign-extends the SEW-wide vector elements before summing them.

    # Unsigned sum reduction into double-width accumulator 
    vwredsumu.vs vd, vs2, vs1, vm   # 2*SEW = 2*SEW + sum(zero-extend(SEW)) 
 
    # Signed sum reduction into double-width accumulator 
    vwredsum.vs  vd, vs2, vs1, vm   # 2*SEW = 2*SEW + sum(sign-extend(SEW))

15.3. Vector Single-Width Floating-Point Reduction Instructions



    # Simple reductions. 
    vfredosum.vs vd, vs2, vs1, vm # Ordered sum 
    vfredsum.vs  vd, vs2, vs1, vm # Unordered sum 
    vfredmax.vs  vd, vs2, vs1, vm # Maximum value 
    vfredmin.vs  vd, vs2, vs1, vm # Minimum value

The vfredosum instruction must sum the floating-point values in element order, starting with the scalar in
vs1[0]--that is, it performs the computation (((vs1[0] + vs2[0]) + vs2[1]) + … ) + vs2[vl-1].
By contrast, vfredsum is allowed to perform the reduction in any order, provided the �nal result corresponds
to some sequential ordering of vl floating-point add operations.

The ordered reduction supports compiler autovectorization, while the unordered FP sum allows for faster implementations.
Floating-point max and min reductions should return the same �nal value and exception flags regardless of operation order.

15.4. Vector Widening Floating-Point Reduction Instructions

Widening forms of the sum reductions are provided that read and write a double-width reduction result.

 # Simple reductions. 
 vfwredosum.vs vd, vs2, vs1, vm # Ordered reduce 2*SEW =  2*SEW + sum(promote(SEW)) 
 vfwredsum.vs vd, vs2, vs1, vm  # Unordered reduce  2*SEW = 2*SEW + sum(promote(SEW))

The reduction of the SEW-width elements is performed as in the single-width reduction case, with the ele-
ments in vs2 promoted to 2*SEW bits before adding to the 2*SEW-bit accumulator.



16. Vector Mask Instructions

Several instructions are provided to help operate on mask values held in a vector register.

16.1. Vector Mask-Register Logical Instructions

Vector mask-register logical operations operate on mask registers. The size of one element in a mask register
is SEW/LMUL, so these instructions all operate on single vector registers regardless of the setting of the vl-
mul �eld in vtype. They do not change the value of vlmul.

As with other vector instructions, the elements with indices less than vstart are unchanged, and vstart is
reset to zero after execution. Vector mask logical instructions are always unmasked so there are no inactive
elements. Mask elements past vl, the tail elements, are zeroed.

Within a mask element, these instructions perform their operations using only the least-signi�cant bit of each
operand and zero-extend the single-bit result to �ll the destination mask element.

    vmand.mm vd, vs2, vs1     # vd[i] =   vs2[i].LSB &&  vs1[i].LSB 
    vmnand.mm vd, vs2, vs1    # vd[i] = !(vs2[i].LSB &&  vs1[i].LSB) 
    vmandnot.mm vd, vs2, vs1  # vd[i] =   vs2[i].LSB && !vs1[i].LSB 
    vmxor.mm  vd, vs2, vs1    # vd[i] =   vs2[i].LSB ^^  vs1[i].LSB 
    vmor.mm  vd, vs2, vs1     # vd[i] =   vs2[i].LSB ||  vs1[i].LSB 
    vmnor.mm  vd, vs2, vs1    # vd[i] = !(vs2[i[.LSB ||  vs1[i].LSB) 
    vmornot.mm  vd, vs2, vs1  # vd[i] =   vs2[i].LSB || !vs1[i].LSB 
    vmxnor.mm vd, vs2, vs1    # vd[i] = !(vs2[i].LSB ^^  vs1[i].LSB)

Several assembler pseudoinstructions are de�ned as shorthand for common uses of mask logical operations:

    vmcpy.m vd, vs  => vmand.mm vd, vs, vs  # Copy mask register 
    vmclr.m vd     => vmxor.mm vd, vd, vd   # Clear mask register 
    vmset.m vd     => vmxnor.mm vd, vd, vd  # Set mask register 
    vmnot.m vd, vs => vmnand.mm vd, vs, vs  # Invert bits

The vmcpy.m instruction is not called vmmv as elsewhere in the architecture mv implies a bitwise copy without interpreting the bits.
The vmcpy.m instruction will clear upper bits of the destination mask register to zero regardless of source values in these bits.

The set of eight mask logical instructions can generate any of the 16 possibly binary logical functions of the
two input masks:

inputs
0 0 1 1 src1
0 1 0 1 src2



output instruction pseudoinstruction
0 0 0 0 vmxor.mm vd, vd, vd vmclr.m vd
1 0 0 0 vmnor.mm vd, src1, src2
0 1 0 0 vmandnot.mm vd, src2, src1
1 1 0 0 vmnand.mm vd, src1, src1 vmnot.m vd, src1
0 0 1 0 vmandnot.mm vd, src1, src2
1 0 1 0 vmnand.mm vd, src2, src2 vmnot.m vd, src2
0 1 1 0 vmxor.mm vd, src1, src2
1 1 1 0 vmnand.mm vd, src1, src2
0 0 0 1 vmand.mm vd, src1, src2
1 0 0 1 vmxnor.mm vd, src1, src2
0 1 0 1 vmand.mm vd, src2, src2 vmcpy.m vd, src2
1 1 0 1 vmornot.mm vd, src2, src1
0 0 1 1 vmand.mm vd, src1, src1 vmcpy.m vd, src1
1 0 1 1 vmornot.mm vd, src1, src2
1 1 1 1 vmxnor.mm vd, vd, vd vmset.m vd

The vector mask logical instructions are designed to be easily fused with a following masked vector operation to effectively expand
the number of predicate registers by moving values into v0 before use.

16.2. Vector mask population count vmpopc

    vmpopc.m rd, vs2, vm

The source operand is a single vector register holding mask register values as described in Section Mask Reg-
ister Layout.

The vmpopc.m instruction counts the number of mask elements of the active elements of the vector source
mask register that have their least-signi�cant bit set, and writes the result to a scalar x register.

The operation can be performed under a mask, in which case only the masked elements are counted.

 vmpopc.m rd, vs2, v0.t # x[rd] = sum_i ( vs2[i].LSB && v0[i].LSB )

Traps on vmpopc.m are always reported with a vstart of 0. The vmpopc instruction will raise an illegal in-
struction exception if vstart is non-zero.

16.3. vmfirst �nd-�rst-set mask bit

    vmfirst.m rd, vs2, vm

The vmfirst instruction �nds the lowest-numbered active element of the source mask vector that has its
LSB set and writes that element’s index to a GPR. If no element has an LSB set, -1 is written to the GPR.

Software can assume that any negative value (highest bit set) corresponds to no element found, as vector lengths will never exceed
231 on any implementation.

Traps on vmfirst are always reported with a vstart of 0. The vmfirst instruction will raise an illegal in-
struction exception if vstart is non-zero.

16.4. vmsbf.m set-before-�rst mask bit



    vmsbf.m vd, vs2, vm 
 
 # Example 
 
     7 6 5 4 3 2 1 0   Element number 
 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsbf.m v2, v3 
     0 0 0 0 0 0 1 1   v2 contents 
 
     1 0 0 1 0 1 0 1   v3 contents 
                       vmsbf.m v2, v3 
     0 0 0 0 0 0 0 0   v2 
 
     0 0 0 0 0 0 0 0   v3 contents 
                       vmsbf.m v2, v3 
     1 1 1 1 1 1 1 1   v2 
 
     1 1 0 0 0 0 1 1   v0 vcontents 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsbf.m v2, v3, v0.t 
     0 1 x x x x 1 1   v2 contents

The vmsbf.m instruction takes a mask register as input and writes results to a mask register. The instruction
writes a 1 to all active mask elements before the �rst source element that has a set LSB, then writes a zero to
that element and all following active elements. If there is no set bit in the source vector, then all active ele-
ments in the destination are written with a 1.

The tail elements in the destination mask register are cleared.

Traps on vmsbf.m are always reported with a vstart of 0. The vmsbf instruction will raise an illegal instruc-
tion exception if vstart is non-zero.

16.5. vmsif.m set-including-�rst mask bit

The vector mask set-including-�rst instruction is similar to set-before-�rst, except it also includes the ele-
ment with a set bit.

    vmsif.m vd, vs2, vm 
 
 # Example 
 
     7 6 5 4 3 2 1 0   Element number 
 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsif.m v2, v3 
     0 0 0 0 0 1 1 1   v2 contents 
 
     1 0 0 1 0 1 0 1   v3 contents 
                       vmsif.m v2, v3 
     0 0 0 0 0 0 0 1   v2 
 
     1 1 0 0 0 0 1 1   v0 vcontents 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsif.m v2, v3, v0.t 
     1 1 x x x x 1 1   v2 contents



The tail elements in the destination mask register are cleared.

Traps on vmsif.m are always reported with a vstart of 0. The vmsif instruction will raise an illegal instruc-
tion exception if vstart is non-zero.

16.6. vmsof.m set-only-�rst mask bit

The vector mask set-only-�rst instruction is similar to set-before-�rst, except it only sets the �rst element
with a bit set, if any.

    vmsof.m vd, vs2, vm 
 
 # Example 
 
     7 6 5 4 3 2 1 0   Element number 
 
     1 0 0 1 0 1 0 0   v3 contents 
                       vmsof.m v2, v3 
     0 0 0 0 0 1 0 0   v2 contents 
 
     1 0 0 1 0 1 0 1   v3 contents 
                       vmsof.m v2, v3 
     0 0 0 0 0 0 0 1   v2 
 
     1 1 0 0 0 0 1 1   v0 vcontents 
     1 1 0 1 0 1 0 0   v3 contents 
                       vmsof.m v2, v3, v0.t 
     0 1 x x x x 0 0   v2 contents

The tail elements in the destination mask register are cleared.

Traps on vmsof.m are always reported with a vstart of 0. The vmsof instruction will raise an illegal instruc-
tion exception if vstart is non-zero.

16.7. Example using vector mask instructions

The following is an example of vectorizing a data-dependent exit loop.



  # char* strcpy(char *dst, const char* src) 
strcpy: 
      mv a2, a0             # Copy dst 
loop: 
    vsetvli x0, x0, e8   # Max length vectors of bytes 
    vlbuff.v v1, (a1)       # Get src bytes 
      csrr t1, vl           # Get number of bytes fetched 
    vmseq.vi v0, v1, 0      # Flag zero bytes 
    vmfirst.m a3, v0        # Zero found? 
      add a1, a1, t1        # Bump pointer 
    vmsif.m v0, v0          # Set mask up to and including zero byte. 
    vsb.v v1, (a2), v0.t    # Write out bytes 
      add a2, a2, t1        # Bump pointer 
      bltz a3, loop         # Zero byte not found, so loop 
 
      ret 
 
  # char* strncpy(char *dst, const char* src, size_t n) 
strncpy: 
      mv a3, a0             # Copy dst 
loop: 
    vsetvli x0, a2, e8   # Vectors of bytes. 
    vlbuff.v v1, (a1)       # Get src bytes 
    vmseq.vi v0, v1, 0      # Flag zero bytes 
    vmfirst.m a4, v0        # Zero found? 
    vmsif.m v0, v0          # Set mask up to and including zero byte. 
    vsb.v v1, (a3), v0.t    # Write out bytes 
      bgez a4, exit         # Done 
      csrr t1, vl           # Get number of bytes fetched 
      add a1, a1, t1        # Bump pointer 
      sub a2, a2, t1        # Decrement count. 
      add a3, a3, t1        # Bump pointer 
      bnez a2, loop         # Anymore? 
 
exit: 
      ret

16.8. Vector Iota Instruction

The viota.m instruction reads a source vector mask register and writes to each element of the destination
vector register group the sum of all the least-signi�cant bits of elements in the mask register whose index is
less than the element, e.g., a parallel pre�x sum of the mask values.

This instruction can be masked, in which case only the enabled elements contribute to the sum and only the
enabled elements are written.



 viota.m vd, vs2, vm 
 
 # Example 
 
     7 6 5 4 3 2 1 0   Element number 
 
     1 0 0 1 0 0 0 1   v2 contents 
                       viota.m v4, v2 # Unmasked 
     2 2 2 1 1 1 1 0   v4 result 
 
     1 1 1 0 1 0 1 1   v0 contents 
     1 0 0 1 0 0 0 1   v2 contents 
     2 3 4 5 6 7 8 9   v4 contents 
                       viota.m v4, v2, v0.t # Masked 
     1 1 1 5 1 7 1 0   v4 results

The result value is zero-extended to �ll the destination element if SEW is wider than the result. If the result
value would overflow the destination SEW, the least-signi�cant SEW bits are retained.

Traps on viota.m are always reported with a vstart of 0, and execution is always restarted from the begin-
ning when resuming after a trap handler. An illegal instruction exception is raised if vstart is non-zero.

An illegal instruction exception is raised if the destination vector register group overlaps the source vector
mask register. If the instruction is masked, an illegal instruction exception is issued if the destination vector
register group overlaps v0.

These constraints exist for two reasons. First, to simplify avoidance of WAR hazards in implementations with temporally long vector
registers and no vector register renaming. Second, to enable resuming execution after a trap simpler.

The viota.m instruction can be combined with memory scatter instructions (indexed stores) to perform vec-
tor compress functions.



    # Compact non-zero elements from input memory array to output memory array 
    # 
    # size_t compact_non_zero(size_t n, const int* in, int* out) 
    # { 
    #   size_t i; 
    #   size_t count = 0; 
    #   int *p = out; 
    # 
    #   for (i=0; i<n; i++) 
    #   { 
    #       const int v = *in++; 
    #       if (v != 0) 
    #           *p++ = v; 
    #   } 
    # 
    #   return (size_t) (p - out); 
    # } 
    # 
    # a0 = n 
    # a1 = &in 
    # a2 = &out 
 
compact_non_zero: 
    li a6, 0                      # Clear count of non-zero elements 
loop: 
    vsetvli a5, a0, e32,m8  # 32-bit integers 
    vlw.v v8, (a1)                # Load input vector 
      sub a0, a0, a5              # Decrement number done 
      slli a5, a5, 2              # Multiply by four bytes 
    vmsne.vi v0, v8, 0            # Locate non-zero values 
      add a1, a1, a5              # Bump input pointer 
    vmpopc.m a5, v0               # Count number of elements set in v0 
    viota.m v16, v0              # Get destination offsets of active elements 
      add a6, a6, a5              # Accumulate number of elements 
    vsll.vi v16, v16, 2, v0.t     # Multiply offsets by four bytes 
      slli a5, a5, 2              # Multiply number of non-zero elements by four bytes 
    vsuxw.v v8, (a2), v16, v0.t   # Scatter using scaled viota results under mask 
      add a2, a2, a5              # Bump output pointer 
      bnez a0, loop               # Any more? 
 
      mv a0, a6                   # Return count 
      ret

16.9. Vector Element Index Instruction

The vid.v instruction writes each element’s index to the destination vector register group, from 0 to vl-1.

    vid.v vd, vm  # Write element ID to destination.

The instruction can be masked.

The vs2 �eld of the instruction must be set to v0, otherwise the encoding is reserved.

The result value is zero-extended to �ll the destination element if SEW is wider than the result. If the result
value would overflow the destination SEW, the least-signi�cant SEW bits are retained.



An illegal instruction exception is generated if the destination vector register group overlaps the mask register
and LMUL > 1.

This constraint is to avoid WAR hazards in long vector implementations without register renaming, and to support restart.
Microarchitectures can implement vid.v instruction using the same datapath as viota.m but with an implicit set mask source.



17. Vector Permutation Instructions

A range of permutation instructions are provided to move elements around within the vector registers.

17.1. Integer Extract Instruction

The integer extract operation transfers a single value between one element of a vector register and a GPR.
This instruction ignores LMUL and vector register groups.

vext.x.v rd, vs2, rs1  # rd = vs2[rs1]

The integer extract operation, vext.x.v reads one SEW-width element from a vector register at the element
index and writes it to GPR destination register rd. The GPR rs1 register gives the element index, treated as an
unsigned integer. If the index is out of range (i.e., x[rs1] ≥ VLEN/SEW), then zero is returned for the element
value. If SEW > XLEN, the least-signi�cant bits are copied to the destination and the upper SEW-XLEN bits are
ignored. If SEW < XLEN, the value is zero-extended to XLEN.

The encodings corresponding to the masked version (vm=0) of vext.x.v are reserved.

An assembler pseudoinstruction vmv.x.s rd, vs2 expanding to vext.x.v rd, vs2, x0 is provided as
a complement to the vmv.s.x instruction below.

17.2. Integer Scalar Move Instruction

The integer scalar move instruction transfers a single value from a scalar x register to element 0 of a vector
register. The instructions ignore LMUL and vector register groups.

In the base vector extension, this instruction can be used to initialize the input of a reduction instruction.
Using scalar move instructions to access element 0 of other than the base register in a vector register group can expose differences
in element layout between different RISC-V vector extension implementations.

vmv.s.x vd, rs1  # vd[0] = rs1

The vmv.s.x instruction copies the scalar integer register to element 0 of the destination vector register. If
SEW < XLEN, the least-signi�cant bits are copied and the upper XLEN-SEW bits are ignored. If SEW > XLEN,
the value is zero-extended to SEW bits.

The other elements in the destination vector register ( 0 < index < VLEN/SEW) are zeroed.

If vstart ≥ vl, no operation is performed and the destination register is not updated.

The vs2 �eld must be v0, other values of vs2 are reserved.

The encodings corresponding to the masked version (vm=0) of vmv.s.x are reserved.

As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.
The complementary vins.v.x instruction, which allows a write to any element in a vector register, has been removed. This instruc-
tion would be the only instruction (apart from vsetvl) that requires two integer source operands, and also would be slow to execute
in an implementation with vector register renaming, relegating its main use to debugger modi�cations to state. The alternative and
more generally useful vslide1up and vslide1down instructions can be used to update vector register state in place over a debug
link without accessing memory.

17.3. Floating-Point Scalar Move Instructions



The floating-point scalar read/write instructions transfer a single value between a scalar f register and ele-
ment 0 of a vector register. The instructions ignore LMUL and vector register groups.

vfmv.f.s rd, vs2  # rd = vs2[0] (rs1=0) 
vfmv.s.f vd, rs1  # vd[0] = rs1 (vs2=0)

The vfmv.f.s instruction copies a single SEW-wide element from index 0 of the source vector register to a
destination scalar floating-point register. If SEW > FLEN, the least-signi�cant FLEN bits are transferred and
the upper SEW-FLEN bits are ignored. If SEW < FLEN, the value is NaN-boxed (1-extended) to FLEN bits.

The vfmv.s.f instruction copies the scalar register to element 0 of the destination vector register. If SEW <
FLEN, the least-signi�cant bits are copied and the upper FLEN-SEW bits are ignored. If SEW > FLEN, the value
is NaN-boxed (1-extended) to SEW bits. The other elements in the destination vector register ( 0 < index <
VLEN/SEW) are zeroed. If vstart ≥ vl, no operation is performed and the destination register is not updated.

As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.

The encodings corresponding to the masked versions (vm=0) of vfmv.f.s and vfmv.s.f are reserved.

17.4. Vector Slide Instructions

The slide instructions move elements up and down a vector register group.

The slide operations can be implemented much more ef�ciently than using the arbitrary register gather instruction. Implementa-
tions may optimize certain OFFSET values for vslideup and vslidedown. In particular, power-of-2 offsets may operate substan-
tially faster than other offsets.

For all of the vslideup, vslidedown, vslide1up, and vslide1down instructions, if vstart ≥ vl, the in-
struction performs no operation and leaves the destination vector register unchanged.

As a consequence, when vl=0, no elements are updated in the destination vector register group, regardless of vstart.

17.4.1. Vector Slideup Instructions

 vslideup.vx vd, vs2, rs1, vm        # vd[i+rs1] = vs2[i] 
 vslideup.vi vd, vs2, uimm[4:0], vm  # vd[i+imm] = vs2[i]

For vslideup, the value in vl speci�es the number of destination elements that are written. The start index
(OFFSET) for the destination can be either speci�ed using an unsigned integer in the x register speci�ed by
rs1, or a 5-bit immediate treated as an unsigned 5-bit quantity.

   vslideup behavior for destination elements 
 
   OFFSET is amount to slideup, either from x register or a 5-bit immediate 
 
                    0 <  i < max(vstart, OFFSET)  Unchanged 
  max(vstart, OFFSET) <= i < vl                   vd[i] = vs2[i-OFFSET] if mask enabled, 
                                                   unchanged if not 
                   vl <= i < VLMAX                Tail elements, vd[i] = 0

The destination vector register group for vslideup cannot overlap the vector register group of the source,
and if operation is masked cannot overlap the vector mask register, otherwise an illegal instruction exception
is raised.

The non-overlap constraints are to avoid WAR hazards on the input vectors during execution, and to enable restart with non-zero
vstart.



17.4.2. Vector Slidedown Instructions

 vslidedown.vx vd, vs2, rs1, vm       # vd[i] = vs2[i+rs1] 
 vslidedown.vi vd, vs2, uimm[4:0], vm # vd[i] = vs2[i+imm]

For vslidedown, the value in vl speci�es the number of destination elements that are written.

The start index (OFFSET) for the source can be either speci�ed using an unsigned integer in the x register
speci�ed by rs1, or a 5-bit immediate treated as an unsigned 5-bit quantity.

    vslidedown behavior for source elements for element i in slide 
                     0 <= i+OFFSET < VLMAX   Read vs2[i+offset] 
                 VLMAX <= i+OFFSET           Read as 0 
 
    vslidedown behavior for destination element i in slide 
                     0 <  i < vstart         Unchanged 
                vstart <= i < vl             Updated if mask enabled, unchanged if not 
                    vl <= i < VLMAX          Zeroed

Microarchitectures can optimize zeros written to the end of a vector for large offsets by treating as effectively smaller vector length,
and encoding using the same internal scheme as for regular vector instruction writes.

The destination vector register group for vslidedown cannot overlap the vector mask register if the instruc-
tion is masked, otherwise an illegal instruction exception is raised.

17.4.3. Vector Slide1up

Variants of slide are provided that only move by one element but which also allow a scalar integer value to be
inserted at the vacated element position.

 vslide1up.vx vd, vs2, rs1, vm        # vd[0]=x[rs1], vd[i+1] = vs2[i]

The vslide1up instruction places the x register argument at location 0 of the destination vector register
group, provided that element 0 is active, otherwise the destination element is unchanged. If XLEN < SEW, the
value is zero-extended to SEW bits. If XLEN > SEW, the least-signi�cant bits are copied over and the high
SEW-XLEN bits are ignored.

The remaining active vl-1 elements are copied over from index i in the source vector register group to index
i+1 in the destination vector register group.

The vl register speci�es how many of the destination vector register elements are written with source values,
and all tail elements are zeroed.

   vslide1up behavior 
 
                    i < vstart  unchanged 
                0 = i = vstart  vd[i] = x[rs1] if mask enabled, unchanged if not 
  max(vstart, 1) <= i < vl      vd[i] = vs2[i-1] if mask enabled, unchanged if not 
              vl <= i < VLMAX   tail elements, vd[i] = 0

The vslide1up instruction requires that the destination vector register group does not overlap the source
vector register group and the mask register if masked. Otherwise, an illegal instruction exception is raised.

17.4.4. Vector Slide1down Instruction



The vslide1down instruction copies the �rst vl-1 active elements values from index i+1 in the source vector
register group to index i in the destination vector register group.

The vl register speci�es how many of the destination vector register elements are written with source values,
and all tail elements are zeroed.

 vslide1down.vx vd, vs2, rs1, vm      # vd[i] = vs2[i+1], vd[vl-1]=x[rs1]

The vslide1down instruction places the x register argument at location vl-1 in the destination vector regis-
ter, provided that element vl-1 is active, otherwise the destination element is unchanged. If XLEN < SEW, the
value is zero-extended to SEW bits. If XLEN > SEW, the least-signi�cant bits are copied over and the high
SEW-XLEN bits are ignored.

   vslide1down behavior 
 
                       i < vstart  unchanged 
             vstart <= i < vl-1    vd[i] = vs2[i+1] if mask enabled, unchanged if not 
             vstart <= i = vl-1    vd[vl-1] = x[rs1] if mask enabled, unchanged if not 
                 vl <= i < VLMAX   tail elements, vd[i] = 0

The vslide1down instruction requires that the destination vector register group does not overlap the mask
register if masked. Otherwise, an illegal instruction exception is raised.

The vslide1down instruction can be used to load values into a vector register without using memory and without disturbing other
vector registers. This provides a path for debuggers to modify the contents of a vector register, albeit slowly, with multiple repeated
vslide1down invocations.

17.5. Vector Register Gather Instruction

The vector register gather instruction reads elements from a �rst source vector register group at locations giv-
en by a second source vector register group. The index values in the second vector are treated as unsigned
integers. The source vector can be read at any index < VLMAX regardless of vl. The number of elements to
write to the destination register is given by vl, and elements past vl in the destination are zeroed. The opera-
tion can be masked.

vrgather.vv vd, vs2, vs1, vm # vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]];

If the element indices are out of range ( vs1[i] ≥ VLMAX ) then zero is returned for the element value.

Vector-scalar and vector-immediate forms of the register gather are also provided. These read one element
from the source vector at the given index, and write this value to the vl elements at the start of the destina-
tion vector register.

These forms allow any vector element to be "splatted" to an entire vector.

vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] 
vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm]

For any vrgather instruction, the destination vector register group cannot overlap with the source vector
register groups, including the mask register if the operation is masked, otherwise an illegal instruction excep-
tion is raised.

When SEW=8, only vector elements 0-255 can be referenced.

17.6. Vector Compress Instruction



The vector compress instruction allows elements selected by a vector mask register from a source vector reg-
ister group to be packed into contiguous elements at the start of the destination vector register group.

  vcompress.vm vd, vs2, vs1  # Compress into vd elements of vs2 where vs1 is enabled

The vector mask register speci�ed by vs1 indicates which of the �rst vl elements of vector register group
vs2 should be extracted and packed into contiguous elements at the beginning of vector register vd. Any re-
maining elements of vd are zeroed.

    Example use of vcompress instruction 
 
        1 1 0 1 0 0 1 0 1   v0 
        8 7 6 5 4 3 2 1 0   v1 
                                vcompress.vm v2, v1, v0 
        0 0 0 0 8 7 5 2 0   v2

The destination vector register group cannot overlap the source vector register group or the source vector
mask register, otherwise an illegal instruction exception is raised.

A trap on a vcompress instruction is always reported with a vstart of 0. Executing a vcompress instruction
with a non-zero vstart raises an illegal instruction exception.

Although possible, vcompress is one of the more dif�cult instructions to restart with a non-zero vstart, so assumption is imple-
mentations will choose not do that but will instead restart from element 0. This does mean elements in destination register after
vstart will already have been updated.



18. Exception Handling

On a trap during a vector instruction (caused by either a synchronous exception or an asynchronous interrupt),
the existing *epc CSR is written with a pointer to the errant vector instruction, while the vstart CSR con-
tains the element index that caused the trap to be taken.

We chose to add a vstart CSR to allow resumption of a partially executed vector instruction to reduce interrupt latencies and to
simplify forward-progress guarantees. This is similar to the scheme in the IBM 3090 vector facility. To ensure forward progress with-
out the vstart CSR, implementations would have to guarantee an entire vector instruction can always complete atomically without
generating a trap. This is particularly dif�cult to ensure in the presence of strided or scatter/gather operations and demand-paged
virtual memory.

18.1. Precise vector traps

Precise vector traps require that:

1. all instructions older than the trapping vector instruction have committed their results

2. no instructions newer than the trapping vector instruction have altered architectural state

3. any operations within the trapping vector instruction affecting result elements preceding the index in the
vstart CSR have committed their results

4. no operations within the trapping vector instruction affecting elements at or following the vstart CSR
have altered architectural state except if restarting and completing the affected vector instruction will re-
cover the correct state.

We relax the last requirement to allow elements following vstart to have been updated at the time the trap
is reported, provided that re-executing the instruction from the given vstart will correctly overwrite those
elements.

We assume most supervisor-mode environments will require precise vector traps.

Except where noted above, vector instructions are allowed to overwrite their inputs, and so in most cases, the
vector instruction restart must be from the vstart location. However, there are a number of cases where this
overwrite is prohibited to enable execution of the the vector instructions to be idempotent and hence
restartable from any location.

18.2. Imprecise vector traps

Imprecise vector traps are traps that are not precise. In particular, instructions newer than *epc may have
committed results, and instructions older than *epc may have not completed execution. Imprecise traps are
primarily intended to be used in situations where reporting an error and terminating execution is the appropri-
ate response.

A platform might specify that interrupts are precise while other traps are imprecise. We assume many embedded platforms will only
generate imprecise traps for vector instructions on fatal errors, so do not require resumable traps.

18.3. Selectable precise/imprecise traps

Some platforms may choose to provide a privileged mode bit to select between precise and imprecise vector
traps. Imprecise mode would run at high-performance but possibly make it dif�cult to discern error causes,
while precise mode would run more slowly, but support debugging of errors albeit with a possibility of not ex-
periencing the same errors as in imprecise mode.

18.4. Swappable traps



Another trap mode can support swappable state in the vector unit, where on a trap, special instructions can
save and restore the vector unit microarchitectural state, to allow execution to continue correctly around im-
precise traps.

This mechanism is not de�ned in the base vector ISA.



19. Divided Element Extension ('Zvediv')

EDIV is the mostly likely part of the spec to change substantially.

The divided element extension allows each element to be treated as a packed sub-vector of narrower ele-
ments. This provides ef�cient support for some forms of narrow-width and mixed-width arithmetic, and also
to allow outer-loop vectorization of short vector and matrix operations. In addition to modifying the behavior
of some existing instructions, a few new instructions are provided to operate on vectors when EDIV > 1.

This is written as an extension for now, but could become part of mandatory base in Unix vector pro�le.

The divided element extension adds a two-bit �eld, vediv[1:0] to the vtype register.

Table 15. vtype register layout
Bits Name Description

XLEN-1 vill Illegal value if set
XLEN-2:7 Reserved (write 0)
6:5 vediv[1:0] Used by EDIV extension
4:2 vsew[2:0] Standard element width (SEW) setting
1:0 vlmul[1:0] Vector register group multiplier (LMUL) setting

The vediv �eld encodes the number of ways, EDIV, into which each SEW-bit element is subdivided into equal
sub-elements. A vector register group is now considered to hold a vector of sub-vectors.

vediv [1:0] Division EDIV
0 0 1 (undivided, as in base)
0 1 2 two equal sub-elements
1 0 4 four equal sub-elements
1 1 8 eight equal sub-elements

SEW EDIV Sub-
element

Integer accumulator FP sum/dot accumulator
sum dot FLEN=32 FLEN=64 FLEN=128

8b 2 4b 8b 8b - - -
8b 4 2b 8b 8b - - -
8b 8 1b 8b 8b - - -
16b 2 8b 16b 16b - - -
16b 4 4b 8b 16b - - -
16b 8 2b 8b 8b - - -
32b 2 16b 32b 32b 32b 32b 32b
32b 4 8b 16b 32b - - -
32b 8 4b 8b 16b - - -
64b 2 32b 64b 64b 32b 64b 64b
64b 4 16b 32b 64b 32b 32b 32b
64b 8 8b 16b 32b - - -
128b 2 64b 128b 128b 32b 64b 128b
128b 4 32b 64b 128b 32b 64b 64b
128b 8 16b 32b 64b 32b 32b 32b
256b 2 128b 256b 256b 32b 64b 128b
256b 4 64b 128b 256b 32b 64b 128b
256b 8 32b 64b 128b 32b 64b 64b



Each implementation de�nes a minimum size for a sub-element, SELEN, which must be at most 8 bits.

While SELEN is a fourth implementation-speci�c parameter, values smaller than 8 would be considered an additional extension.

19.1. Instructions not affected by EDIV

The vector start register vstart and exception reporting continue to work as before.

The vector length vl control and vector masking continue to operate at the element level.

Vector masking continues to operate at the element level, so sub-elements cannot be individually masked.

SEW can be changed dynamically to enabled per-element masking for sub-elements of 8 bits and greater.

Vector load/store and AMO instructions are unaffected by EDIV, and continue to move whole elements.

Vector mask logical operations are unchanged by EDIV setting, and continue to operate on vector registers
containing element masks.

Vector mask population count (vmpopc), �nd-�rst and related instructions (vmfirst, vmsbf, vmsif, vmsof),
iota (viota), and element index (vid) instructions are unaffected by EDIV.

Vector integer bit insert/extract, and integer and floating-point scalar move instruction are unaffected by
EDIV.

Vector slide-up/slide-down are unaffected by EDIV.

Vector compress instructions are unaffected by EDIV.

19.2. Instructions Affected by EDIV

19.2.1. Regular Vector Arithmetic Instructions under EDIV

Most vector arithmetic operations are modi�ed to operate on the individual sub-elements, so effective SEW is
SEW/EDIV and effective vector length is vl * EDIV. For example, a vector add of 32-bit elements with a vl of
5 and EDIV of 4, operates identically to a vector add of 8-bit elements with a vector length of 20.

vsetvli t0, a0, e32,m1,d4  # Vectors of 32-bit elements, divided into byte sub-elements 
vadd.vv v1,v2,v3                     # Performs a vector of 4*vl 8-bit additions. 
vsll.vx v1,v2,x1                     # Performs a vector of 4*vl 8-bit shifts.

19.2.2. Vector Add with Carry/Subtract with Borrow Reserved under EDIV>1

For EDIV > 1, vadc, vmadc, vsbc, vmsbc are reserved.

19.2.3. Vector Reduction Instructions under EDIV

Vector single-width integer sum reduction instructions are reserved under EDIV>1. Other vector single-width
reductions and vector widening integer sum reduction instructions now operate independently on all ele-
ments in a vector, reducing sub-element values within an element to an element-wide result.

The scalar input is taken from the least-signi�cant bits of the second operand, with the number of bits equal
to the number of signi�cant result bits (i.e., for sum and dot reductions, the number of bits are given in table
above, for non-sum and non-dot reductions, equal to the element size).



# Sum each sub-vector of four bytes into a 16-bit result. 
vsetvli t0, a0, e32,d4  # Vectors of 32-bit elements, divided into byte sub-elements 
vwredsum.vs v1, v2, v3 # v1[i][15:0] = v2[i][31:24] + v2[i][23:16] 
                       #              + v2[i][15:8] + v2[i][7:0] + v3[i][15:0] 
 
# Find maximum among sub-elements 
vredmax.vs v5, v6, v7 # v5[i][7:0] = max(v6[i][31:24], v6[i][23:16], 
                      #                    v6[i][15:8], v6[i][7:0], v7[i][7:0])

Integer sub-element non-sum reductions produce a �nal result that is max(8,SEW/EDIV) bits wide, sign- or
zero-extended to full SEW if necessary.

Integer sub-element widening sum reductions produce a �nal result that is max(8,min(SEW,2*SEW/EDIV))
bits wide, sign- or zero-extended to full SEW if necessary.

Single-width floating-point reductions produce a �nal result that is SEW/EDIV bits wide.

Widening floating-point sum reductions produce a �nal result that is min(2*SEW/EDIV,FLEN) bits wide, NaN-
boxed to the full SEW width if necessary.

19.2.4. Vector Register Gather Instructions under EDIV

Vector register gather instructions under non-zero EDIV only gather sub-elements within the element. The
source and index values are interpreted as relative to the enclosing element only. Index values ≥ EDIV write a
zero value into the result sub-element.

       |       |       |  SEW = 32b, EDIV=4 
        7 6 5 4 3 2 1 0  bytes 
        d e a d b e e f  v1 
        0 1 9 2 0 2 3 2  v2 
                            vrgather.vv v3, v1, v2 
        d a 0 e f e b e  v3 
                            vrgather.vi v4, v1, 1 
        a a a a e e e e  v4

Vector register gathers with scalar or immediate arguments can "splat" values across sub-elements within an element.
Implementations can provide fast implementations of register gathers constrained within a single element width.

19.3. Vector Integer Dot-Product Instruction

The integer dot-product reduction vdot.vv performs an element-wise multiplication between the source
sub-elements then accumulates the results into the destination vector element. Note the assembler syntax
uses a .vv suf�x since both inputs are vectors of elements.

Sub-element integer dot reductions produce a �nal result that is max(8,min(SEW,4*SEW/EDIV)) bits wide,
sign- or zero-extended to full SEW if necessary.

# Unsigned dot-product 
vdotu.vv vd, vs2, vs1, vm  # Vector-vector 
 
# Signed dot-product 
vdot.vv vd, vs2, vs1, vm   # Vector-vector



  # Dot product, SEW=32, EDIV=1 
  vdot.vv  vd, vs2, vs1, vm   # vd[i][31:0] += vs2[i][31:0] * vs1[i][31:0] 
 
  # Dot product, SEW=32, EDIV=2 
  vdot.vv vd, vs2, vs1, vm # vd[i][31:0] += vs2[i][31:16] * vs1[i][31:16] 
                                            + vs2[i][15:0] * vs1[i][15:0] 
 
  # Dot product, SEW=32, EDIV=4 
  vdot.vv vd, vs2, vs1, vm # vd[i][31:0] += vs2[i][31:24] * vs1[i][31:24] 
                                            + vs2[i][23:16] * vs1[i][23:16] 
                                            + vs2[i][15:8] * vs1[i][15:8] 
                                            + vs2[i][7:0] * vs1[i][7:0]

19.4. Vector Floating-Point Dot Product Instruction

The floating-point dot-product reduction vfdot.vv performs an element-wise multiplication between the
source sub-elements then accumulates the results into the destination vector element. Note the assembler
syntax uses a .vv suf�x since both inputs are vectors of elements.

# Signed dot-product 
vfdot.vv vd, vs2, vs1, vm   # Vector-vector

# Dot product. SEW=32, EDIV=2 
vfdot.v  vd, vs2, vs1, vm # vd[i][31:0] += vs2[i][31:16] * vs1[i][31:16] 
                                          + vs2[i][15:0] * vs1[i][15:0] 
 
# Floating-point sub-vectors of two half-precision floats packed into 32-bit elements. 
vsetvli t0, a0, e32,m1,d2  # Vectors of 32-bit elements, divided into 16b sub-elements 
vfdot.vv v1, v2, v3   # v1[i][31:0] +=  v2[i][31:16]*v3[i][31:16] + v2[i][16:0]*v3[i][16:0] 
 
# Floating-point sub-vectors of two half-precision floats packed into 32-bit elements. 
vsetvli t0, a0, e32,m1,d2  # Vectors of 32-bit elements, divided into 16b sub-elements 
vfdot.vv v1, v2, v3   # v1[i][31:0] +=  v2[i][31:16]*v3[i][31:16] + v2[i][16:0]*v3[i][16:0] 
 
# Floating-point sub-vectors of four half-precision floats packed into 64-bit elements. 
vsetvli t0, a0, e64,m1,d4  # Vectors of 64-bit elements, divided into 16b sub-elements 
vfdot.vv v1, v2, v3 
                 # v1[i][31:0] +=  v2[i][31:16]*v3[i][31:16] + v2[i][16:0]*v3[i][16:0] + 
                 #                 v2[i][63:48]*v3[i][63:48] + v2[i][47:32]*v3[i][47:32]; 
                 # v1[i][63:32] = ~0 (NaN boxing)



20. Vector Instruction Listing

Integer Integer FP
funct3 funct3 funct3

OPIVV V OP-
MVV V OPFVV V

OPIVX X OP-
MVX X OPFVF F

OPIVI I

funct6 funct6 funct6

000000 V X I vadd 000000 V vred-
sum 000000 V F vfadd

000001 000001 V vredand 000001 V vfred-
sum

000010 V X vsub 000010 V vredor 000010 V F vfsub

000011 X I vrsub 000011 V vredxor 000011 V vfredo-
sum

000100 V X vminu 000100 V vred-
minu 000100 V F vfmin

000101 V X vmin 000101 V vredmin 000101 V vfred-
min

000110 V X vmaxu 000110 V vred-
maxu 000110 V F vfmax

000111 V X vmax 000111 V vred-
max 000111 V vfred-

max
001000 001000 001000 V F vfsgnj
001001 V X I vand 001001 001001 V F vfsgnjn
001010 V X I vor 001010 001010 V F vfsgnjx
001011 V X I vxor 001011 001011

001100 V X I vrgath-
er 001100 V vext.x.v 001100 V vfmv.f.s

001101 001101 X vmv.s.x 001101 F vfmv.s.f

001110 X I vslide-
up 001110 X vs-

lide1up 001110

001111 X I vslide-
down 001111 X vslide1-

down 001111



funct6 funct6 funct6
010000 V X I vadc 010000 010000
010001 V X I vmadc 010001 010001
010010 V X vsbc 010010 010010
010011 V X vmsbc 010011 010011
010100 010100 V vmpopc 010100
010101 010101 V vm�rst 010101

010110 010110 V VMU-
NARY0 010110

010111 V X I vmerge/vmv 010111 V vcom-
press 010111 F vfmerge.vf/vfmv

011000 V X I vmseq 011000 V vmand-
not 011000 V F vmfeq

011001 V X I vmsne 011001 V vmand 011001 V F vmfle
011010 V X vmsltu 011010 V vmor 011010 V F vmford
011011 V X vmslt 011011 V vmxor 011011 V F vmflt
011100 V X I vmsleu 011100 V vmornot 011100 V F vmfne
011101 V X I vmsle 011101 V vmnand 011101 F vmfgt
011110 X I vmsgtu 011110 V vmnor 011110
011111 X I vmsgt 011111 V vmxnor 011111 F vmfge

funct6 funct6 funct6
100000 V X I vsaddu 100000 V X vdivu 100000 V F vfdiv
100001 V X I vsadd 100001 V X vdiv 100001 F vfrdiv

100010 V X vssubu 100010 V X vremu 100010 V VFU-
NARY0

100011 V X vssub 100011 V X vrem 100011 V VFU-
NARY1

100100 V X I vaadd 100100 V X vmulhu 100100 V F vfmul
100101 V X I vsll 100101 V X vmul 100101
100110 V X vasub 100110 V X vmulhsu 100110
100111 V X vsmul 100111 V X vmulh 100111 F vfrsub
101000 V X I vsrl 101000 101000 V F vfmadd

101001 V X I vsra 101001 V X vmadd 101001 V F vfn-
madd

101010 V X I vssrl 101010 101010 V F vfmsub

101011 V X I vssra 101011 V X vnmsub 101011 V F vfnm-
sub

101100 V X I vnsrl 101100 101100 V F vfmacc

101101 V X I vnsra 101101 V X vmacc 101101 V F vfn-
macc

101110 V X I vnclipu 101110 101110 V F vfmsac

101111 V X I vnclip 101111 V X vnmsac 101111 V F vfnm-
sac



funct6 funct6 funct6

110000 V vwred-
sumu 110000 V X vwaddu 110000 V F vfwadd

110001 V vwred-
sum 110001 V X vwadd 110001 V vfwredsu

110010 110010 V X vwsubu 110010 V F vfwsub

110011 110011 V X vwsub 110011 V vfwre-
dosum

110100 110100 V X vwad-
du.w 110100 V F vfwad-

d.w

110101 110101 V X vwad-
d.w 110101

110110 110110 V X vwsub-
u.w 110110 V F vfw-

sub.w
110111 110111 V X vwsub.w 110111
111000 V vdotu 111000 V X vwmulu 111000 V F vfwmul
111001 V vdot 111001 111001 V vfdot

111010 111010 V X vwmul-
su 111010

111011 111011 V X vwmul 111011

111100 V X vws-
maccu 111100 V X vwmac-

cu 111100 V F vfw-
macc

111101 V X vws-
macc 111101 V X vwmacc 111101 V F vfwn-

macc

111110 V X vws-
maccsu 111110 V X vw-

maccsu 111110 V F vfwm-
sac

111111 X vws-
maccus 111111 X vwmac-

cus 111111 V F vfwn-
msac



Table 16. VFUNARY0 encoding space
vs1 name
single-width converts
00000 vfcvt.xu.f.v
00001 vfcvt.x.f.v
00010 vfcvt.f.xu.v
00011 vfcvt.f.x.v
widening converts
01000 vfwcvt.xu.f.v
01001 vfwcvt.x.f.v
01010 vfwcvt.f.xu.v
01011 vfwcvt.f.x.v
01100 vfwcvt.f.f.v
narrowing converts
10000 vfncvt.xu.f.v
10001 vfncvt.x.f.v
10010 vfncvt.f.xu.v
10011 vfncvt.f.x.v
10100 vfncvt.f.f.v

Table 17. VFUNARY1 encoding space
vs1 name
00000 vfsqrt.v
10000 vfclass.v

Table 18. VMUNARY0 encoding space
vs1
00001 vmsbf
00010 vmsof
00011 vmsif
10000 viota
10001 vid



Appendix A: Vector Assembly Code Examples

The following are provided as non-normative text to help explain the vector ISA.

A.1. Vector-vector add example

    # vector-vector add routine of 32-bit integers 
    # void vvaddint32(size_t n, const int*x, const int*y, int*z) 
    # { for (size_t i=0; i<n; i++) { z[i]=x[i]+y[i]; } } 
    # 
    # a0 = n, a1 = x, a2 = y, a3 = z 
    # Non-vector instructions are indented 
vvaddint32: 
    vsetvli t0, a0, e32 # Set vector length based on 32-bit vectors 
    vlw.v v0, (a1)           # Get first vector 
      sub a0, a0, t0         # Decrement number done 
      slli t0, t0, 2         # Multiply number done by 4 bytes 
      add a1, a1, t0         # Bump pointer 
    vlw.v v1, (a2)           # Get second vector 
      add a2, a2, t0         # Bump pointer 
    vadd.vv v2, v0, v1        # Sum vectors 
    vsw.v v2, (a3)           # Store result 
      add a3, a3, t0         # Bump pointer 
      bnez a0, vvaddint32    # Loop back 
      ret                    # Finished

A.2. Example with mixed-width mask and compute.

# Code using one width for predicate and different width for masked 
# compute. 
#   int8_t a[]; int32_t b[], c[]; 
#   for (i=0;  i<n; i++) { b[i] =  (a[i] < 5) ? c[i] : 1; } 
# 
# Mixed-width code that keeps SEW/LMUL=8 
  loop: 
    vsetvli a4, a0, e8,m1  # Byte vector for predicate calc 
    vlb.v v1, (a1)                # Load a[i] 
      add a1, a1, a4              # Bump pointer. 
    vmslt.vi v0, v1, 5            # a[i] < 5? 
 
    vsetvli x0, a0, e32,m4 # Vector of 32-bit values. 
      sub a0, a0, a4              # Decrement count 
    vmv.v.i v4, 1                 # Splat immediate to destination 
    vlw.v v4, (a3), v0.t          # Load requested elements of C. 
      sll t1, a4, 2 
      add a3, a3, t1              # Bump pointer. 
    vsw.v v4, (a2)                # Store b[i]. 
      add a2, a2, t1              # Bump pointer. 
      bnez a0, loop               # Any more?

A.3. Memcpy example



    # void *memcpy(void* dest, const void* src, size_t n) 
    # a0=dest, a1=src, a2=n 
    # 
  memcpy: 
      mv a3, a0 # Copy destination 
  loop: 
    vsetvli t0, a2, e8,m8  # Vectors of 8b 
    vlb.v v0, (a1)                # Load bytes 
      add a1, a1, t0              # Bump pointer 
      sub a2, a2, t0              # Decrement count 
    vsb.v v0, (a3)                # Store bytes 
      add a3, a3, t0              # Bump pointer 
      bnez a2, loop               # Any more? 
      ret                         # Return

A.4. Conditional example

# (int16) z[i] = ((int8) x[i] < 5) ? (int16) a[i] : (int16) b[i]; 
# 
# Fixed 16b SEW: 
 
loop: 
    vsetvli t0, a0, e16  # Use 16b elements. 
    vlb.v v0, (a1)          # Get x[i], sign-extended to 16b 
      sub a0, a0, t0        # Decrement element count 
      add a1, a1, t0        # x[i] Bump pointer 
    vmslt.vi v0, v0, 5      # Set mask in v0 
      slli t0, t0, 1        # Multiply by 2 bytes 
    vlh.v v1, (a2), v0.t    # z[i] = a[i] case 
    vmnot.m v0, v0          # Invert v0 
      add a2, a2, t0        # a[i] bump pointer 
    vlh.v v1, (a3), v0.t    # z[i] = b[i] case 
      add a3, a3, t0        # b[i] bump pointer 
    vsh.v v1, (a4)          # Store z 
      add a4, a4, t0        # b[i] bump pointer 
      bnez a0, loop

A.5. SAXPY example



# void 
# saxpy(size_t n, const float a, const float *x, float *y) 
# { 
#   size_t i; 
#   for (i=0; i<n; i++) 
#     y[i] = a * x[i] + y[i]; 
# } 
# 
# register arguments: 
#     a0      n 
#     fa0     a 
#     a1      x 
#     a2      y 
 
saxpy: 
    vsetvli a4, a0, e32, m8 
    vlw.v v0, (a1) 
    sub a0, a0, a4 
    slli a4, a4, 2 
    add a1, a1, a4 
    vlw.v v8, (a2) 
    vfmacc.vf v8, fa0, v0 
    vsw.v v8, (a2) 
    add a2, a2, a4 
    bnez a0, saxpy 
    ret

A.6. SGEMM example



# RV64IDV system 
# 
# void 
# sgemm_nn(size_t n, 
#          size_t m, 
#          size_t k, 
#          const float*a,   // m * k matrix 
#          size_t lda, 
#          const float*b,   // k * n matrix 
#          size_t ldb, 
#          float*c,         // m * n matrix 
#          size_t ldc) 
# 
#  c += a*b (alpha=1, no transpose on input matrices) 
#  matrices stored in C row-major order 
 
#define n a0 
#define m a1 
#define k a2 
#define ap a3 
#define astride a4 
#define bp a5 
#define bstride a6 
#define cp a7 
#define cstride t0 
#define kt t1 
#define nt t2 
#define bnp t3 
#define cnp t4 
#define akp t5 
#define bkp s0 
#define nvl s1 
#define ccp s2 
#define amp s3 
 
# Use args as additional temporaries 
#define ft12 fa0 
#define ft13 fa1 
#define ft14 fa2 
#define ft15 fa3 
 
# This version holds a 16*VLMAX block of C matrix in vector registers 
# in inner loop, but otherwise does not cache or TLB tiling. 
 
sgemm_nn: 
    addi sp, sp, -FRAMESIZE 
    sd s0, OFFSET(sp) 
    sd s1, OFFSET(sp) 
    sd s2, OFFSET(sp) 
 
    # Check for zero size matrices 
    beqz n, exit 
    beqz m, exit 
    beqz k, exit 
 
    # Convert elements strides to byte strides. 
    ld cstride, OFFSET(sp)   # Get arg from stack frame 
    slli astride, astride, 2 



    slli bstride, bstride, 2 
    slli cstride, cstride, 2 
 
    slti t6, m, 16 
    bnez t6, end_rows 
 
c_row_loop: # Loop across rows of C blocks 
 
    mv nt, n  # Initialize n counter for next row of C blocks 
 
    mv bnp, bp # Initialize B n-loop pointer to start 
    mv cnp, cp # Initialize C n-loop pointer 
 
c_col_loop: # Loop across one row of C blocks 
    vsetvli nvl, nt, e32  # 32-bit vectors, LMUL=1 
 
    mv akp, ap   # reset pointer into A to beginning 
    mv bkp, bnp # step to next column in B matrix 
 
    # Initalize current C submatrix block from memory. 
    vlw.v  v0, (cnp); add ccp, cnp, cstride; 
    vlw.v  v1, (ccp); add ccp, ccp, cstride; 
    vlw.v  v2, (ccp); add ccp, ccp, cstride; 
    vlw.v  v3, (ccp); add ccp, ccp, cstride; 
    vlw.v  v4, (ccp); add ccp, ccp, cstride; 
    vlw.v  v5, (ccp); add ccp, ccp, cstride; 
    vlw.v  v6, (ccp); add ccp, ccp, cstride; 
    vlw.v  v7, (ccp); add ccp, ccp, cstride; 
    vlw.v  v8, (ccp); add ccp, ccp, cstride; 
    vlw.v  v9, (ccp); add ccp, ccp, cstride; 
    vlw.v v10, (ccp); add ccp, ccp, cstride; 
    vlw.v v11, (ccp); add ccp, ccp, cstride; 
    vlw.v v12, (ccp); add ccp, ccp, cstride; 
    vlw.v v13, (ccp); add ccp, ccp, cstride; 
    vlw.v v14, (ccp); add ccp, ccp, cstride; 
    vlw.v v15, (ccp) 
 
 
    mv kt, k # Initialize inner loop counter 
 
    # Inner loop scheduled assuming 4-clock occupancy of vfmacc instruction and single-issue
    # Software pipeline loads 
    flw ft0, (akp); add amp, akp, astride; 
    flw ft1, (amp); add amp, amp, astride; 
    flw ft2, (amp); add amp, amp, astride; 
    flw ft3, (amp); add amp, amp, astride; 
    # Get vector from B matrix 
    vlw.v v16, (bkp) 
 
    # Loop on inner dimension for current C block 
 k_loop: 
    vfmacc.vf v0, ft0, v16 
    add bkp, bkp, bstride 
    flw ft4, (amp) 
    add amp, amp, astride 
    vfmacc.vf v1, ft1, v16 
    addi kt, kt, -1    # Decrement k counter 
    flw ft5, (amp) 



    add amp, amp, astride 
    vfmacc.vf v2, ft2, v16 
    flw ft6, (amp) 
    add amp, amp, astride 
    flw ft7, (amp) 
    vfmacc.vf v3, ft3, v16 
    add amp, amp, astride 
    flw ft8, (amp) 
    add amp, amp, astride 
    vfmacc.vf v4, ft4, v16 
    flw ft9, (amp) 
    add amp, amp, astride 
    vfmacc.vf v5, ft5, v16 
    flw ft10, (amp) 
    add amp, amp, astride 
    vfmacc.vf v6, ft6, v16 
    flw ft11, (amp) 
    add amp, amp, astride 
    vfmacc.vf v7, ft7, v16 
    flw ft12, (amp) 
    add amp, amp, astride 
    vfmacc.vf v8, ft8, v16 
    flw ft13, (amp) 
    add amp, amp, astride 
    vfmacc.vf v9, ft9, v16 
    flw ft14, (amp) 
    add amp, amp, astride 
    vfmacc.vf v10, ft10, v16 
    flw ft15, (amp) 
    add amp, amp, astride 
    addi akp, akp, 4            # Move to next column of a 
    vfmacc.vf v11, ft11, v16 
    beqz kt, 1f                 # Don't load past end of matrix 
    flw ft0, (akp) 
    add amp, akp, astride 
1:  vfmacc.vf v12, ft12, v16 
    beqz kt, 1f 
    flw ft1, (amp) 
    add amp, amp, astride 
1:  vfmacc.vf v13, ft13, v16 
    beqz kt, 1f 
    flw ft2, (amp) 
    add amp, amp, astride 
1:  vfmacc.vf v14, ft14, v16 
    beqz kt, 1f                 # Exit out of loop 
    flw ft3, (amp) 
    add amp, amp, astride 
    vfmacc.vf v15, ft15, v16 
    vlw.v v16, (bkp)            # Get next vector from B matrix, overlap loads with jump sta
    j k_loop 
 
1:  vfmacc.vf v15, ft15, v16 
 
    # Save C matrix block back to memory 
    vsw.v  v0, (cnp); add ccp, cnp, cstride; 
    vsw.v  v1, (ccp); add ccp, ccp, cstride; 
    vsw.v  v2, (ccp); add ccp, ccp, cstride; 
    vsw.v  v3, (ccp); add ccp, ccp, cstride; 



    vsw.v  v4, (ccp); add ccp, ccp, cstride; 
    vsw.v  v5, (ccp); add ccp, ccp, cstride; 
    vsw.v  v6, (ccp); add ccp, ccp, cstride; 
    vsw.v  v7, (ccp); add ccp, ccp, cstride; 
    vsw.v  v8, (ccp); add ccp, ccp, cstride; 
    vsw.v  v9, (ccp); add ccp, ccp, cstride; 
    vsw.v v10, (ccp); add ccp, ccp, cstride; 
    vsw.v v11, (ccp); add ccp, ccp, cstride; 
    vsw.v v12, (ccp); add ccp, ccp, cstride; 
    vsw.v v13, (ccp); add ccp, ccp, cstride; 
    vsw.v v14, (ccp); add ccp, ccp, cstride; 
    vsw.v v15, (ccp) 
 
    # Following tail instructions should be scheduled earlier in free slots during C block s
    # Leaving here for clarity. 
 
    # Bump pointers for loop across blocks in one row 
    slli t6, nvl, 2 
    add cnp, cnp, t6                         # Move C block pointer over 
    add bnp, bnp, t6                         # Move B block pointer over 
    sub nt, nt, nvl                          # Decrement element count in n dimension 
    bnez nt, c_col_loop                      # Any more to do? 
 
    # Move to next set of rows 
    addi m, m, -16  # Did 16 rows above 
    slli t6, astride, 4  # Multiply astride by 16 
    add ap, ap, t6         # Move A matrix pointer down 16 rows 
    slli t6, cstride, 4  # Multiply cstride by 16 
    add cp, cp, t6         # Move C matrix pointer down 16 rows 
 
    slti t6, m, 16 
    beqz t6, c_row_loop 
 
    # Handle end of matrix with fewer than 16 rows. 
    # Can use smaller versions of above decreasing in powers-of-2 depending on code-size con
end_rows: 
    # Not done. 
 
exit: 
    ld s0, OFFSET(sp) 
    ld s1, OFFSET(sp) 
    ld s2, OFFSET(sp) 
    addi sp, sp, FRAMESIZE 
    ret


