
1. Zc* v1.0.0-RC5.7

1.1. Change history since v0.70.1 (tagged release)
Table 1. Change history

Version change

v1.0.0-RC5.7 Add Zcb description and fix some typos. PUBLIC
REVIEW REVISION.

v1.0.0-RC5.6 Remove Zcmpe which is not frozen and is
causing confusion

v1.0.0-RC5.5 Following ARC review Adjust the split so we
have 224 cm.jalt and 32 cm.jt

v1.0.0-RC5.4 Change wording for dependencies to match arch
manual "Zxxx requires Zyyy" changed to "Zxxx
depends on Zyyy"

v1.0.0-RC5.3 Add dependency on Zicsr for Zcmt

v1.0.0-RC5.2 Adjust the split so we have 240 cm.jalt and 16
cm.jt

v1.0.0-RC5.1 Make cm.jt/cm.jalt only valid if JVT.mode=0, and
allow different behaviour in the future if
JVT.mode>0

v1.0.0-RC5 Revert to cm.jt and cm.jalt encodings, to avoid
toolchain and trace problems

v1.0.0-RC4.1 Resolve typographical issues with the document
only, no actual changes

v1.0.0-RC4 Release candidate

Remove Zcmb as benefit is low. Remove cm.jalt,
read LSB of jump table entry to determine
whether to link

v0.70.5 Resolve https://github.com/riscv/riscv-code-size-
reduction/issues/163 - jvt.base is WARL and
fewer bits than the max can be implemented

v0.70.4 Clarified https://github.com/riscv/riscv-code-size-
reduction/issues/159 - Need Zbb and Zba for
RV64 and M/ZMmul to get all of Zcb

Resolved https://github.com/riscv/riscv-code-
size-reduction/issues/161

Resolved https://github.com/riscv/riscv-code-
size-reduction/issues/160 - Allocated Smstateen
bit 2 and added the relevant text

1

https://github.com/riscv/riscv-code-size-reduction/issues/163
https://github.com/riscv/riscv-code-size-reduction/issues/163
https://github.com/riscv/riscv-code-size-reduction/issues/159
https://github.com/riscv/riscv-code-size-reduction/issues/159
https://github.com/riscv/riscv-code-size-reduction/issues/161
https://github.com/riscv/riscv-code-size-reduction/issues/161
https://github.com/riscv/riscv-code-size-reduction/issues/160
https://github.com/riscv/riscv-code-size-reduction/issues/160

Version change

v0.70.3 Added rule that Zcf and Zcmt imply Zca (this text
was missing, this is not a spec change:
https://github.com/riscv/riscv-code-size-
reduction/pull/151)

Added that Zcf is illegal for RV64, as it contains
no instructions (clarification: https://github.com/
riscv/riscv-code-size-reduction/issues/149)

Added push/pop examples in the push/pop
section

v0.70.2 Stylistic changes only, removing redundant text.

Corrected field names on JVT CSR diagram, and
fixed synopsis for cm.mvsa01

1.2. Zc* Overview
This document is in the Frozen state. Change is extremely unlikely. A high threshold will be used,
and a change will only occur because of some truly critical issue being identified during the public
review cycle. Any other desired or needed changes can be the subject of a follow-on new extension.
See https://riscv.org/spec-state

Zc* is a group of extensions which define subsets of the existing C extension (Zca, Zcd, Zcf) and new
extensions which only contain 16-bit encodings.

Zcm* all reuse the encodings for c.fld, c.fsd, c.fldsp, c.fsdsp.

Table 2. Zc* extension overview

Instruction Zca Zcf Zcd Zcb Zcmp Zcmt

The Zca extension is added as way to refer to instructions in the C extension that do not
include the floating-point loads and stores

C excl. c.f* yes

The Zcf extension is added as a way to refer to compressed single-precision floating-point
load/stores

c.flw yes

c.flwsp yes

c.fsw yes

c.fswsp yes

The Zcd extension is added as a way to refer to compressed double-precision floating-point
load/stores

c.fld yes

c.fldsp yes

2

https://github.com/riscv/riscv-code-size-reduction/pull/151
https://github.com/riscv/riscv-code-size-reduction/pull/151
https://github.com/riscv/riscv-code-size-reduction/issues/149
https://github.com/riscv/riscv-code-size-reduction/issues/149
https://riscv.org/spec-state

Instruction Zca Zcf Zcd Zcb Zcmp Zcmt

c.fsd yes

c.fsdsp yes

Simple operations for use on all architectures

c.lbu yes

c.lh yes

c.lhu yes

c.sb yes

c.sh yes

c.zext.b yes

c.sext.b yes

c.zext.h yes

c.sext.h yes

c.zext.w yes

c.mul yes

c.not yes

PUSH/POP and double move which overlap with c.fsdsp

cm.push yes

cm.pop yes

cm.popret yes

cm.popretz yes

cm.mva01s yes

cm.mvsa01 yes

Table jump

cm.jt yes

cm.jalt yes

1.3. Zca
The Zca extension is added as way to refer to instructions in the C extension that do not include the
floating-point loads and stores.

Therefore it excluded all 16-bit floating point loads and stores: c.flw, c.flwsp, c.fsw, c.fswsp, c.fld,
c.fldsp, c.fsd, c.fsdsp.

NOTE the the C extension only includes F/D instructions when D and F are also specified

3

1.4. Zcf (RV32 only)
Zcf is the existing set of compressed single precision floating point loads and stores: c.flw, c.flwsp,
c.fsw, c.fswsp.

Zcf is only relevant to RV32, it cannot be specified for RV64.

The Zcf extension depends on the Zca extension.

1.5. Zcd
Zcd is the existing set of compressed double precision floating point loads and stores: c.fld, c.fldsp,
c.fsd, c.fsdsp.

The Zcd extension depends on the Zca extension.

1.6. Zcb
Zcb has simple code-size saving instructions which are easy to implement on all CPUs.

All proposed encodings are currently reserved for all architectures, and have no conflicts with any
existing extensions.

The Zcb extension depends on the Zca extension.

As shown on the individual instruction pages, many of the instructions in Zcb depend upon another
extension being implemented. For example, c.mul is only implemented if M or Zmmul is
implemented, and c.sext.b is only implemented if Zbb is implemented.

The c.mul encoding uses the CR register format along with other instructions such as c.sub, c.xor etc.

NOTE c.sext.w is a pseudo-instruction for c.addiw rd, 0 (RV64)

RV32 RV64 Mnemonic Instruction

yes yes c.lbu rd', uimm(rs1') Load unsigned byte, 16-bit encoding

yes yes c.lhu rd', uimm(rs1') Load unsigned halfword, 16-bit encoding

yes yes c.lh rd', uimm(rs1') Load signed halfword, 16-bit encoding

yes yes c.sb rs2', uimm(rs1') Store byte, 16-bit encoding

yes yes c.sh rs2', uimm(rs1') Store halfword, 16-bit encoding

yes yes c.zext.b rsd' Zero extend byte, 16-bit encoding

yes yes c.sext.b rsd' Sign extend byte, 16-bit encoding

yes yes c.zext.h rsd' Zero extend halfword, 16-bit encoding

yes yes c.sext.h rsd' Sign extend halfword, 16-bit encoding

yes c.zext.w rsd' Zero extend word, 16-bit encoding

4

RV32 RV64 Mnemonic Instruction

yes yes c.not rsd' Bitwise not, 16-bit encoding

yes yes c.mul rsd', rs2' Multiply, 16-bit encoding

5

1.7. Zcmp
The Zcmp extension is a set of instructions which may be executed as a series of existing 32-bit
RISC-V instructions.

This extension reuses some encodings from c.fsdsp. Therefore it is incompatible with Zcd, which is
included when C and D extensions are both present.

The Zcmp extension depends on the Zca extension.

The PUSH/POP assembly syntax uses several variables, the meaning of which are:

• reg_list is a list containing 1 to 13 registers (ra and 0 to 12 s registers)

◦ valid values: {ra}, {ra, s0}, {ra, s0-s1}, {ra, s0-s2}, …, {ra, s0-s8}, {ra, s0-s9}, {ra, s0-s11}

◦ note that {ra, s0-s10} is not valid, giving 12 lists not 13 for better encoding

• stack_adj is the total size of the stack frame.

◦ valid values vary with register list length and the specific encoding, see the instruction
pages for details.

RV32 RV64 Mnemonic Instruction

yes yes cm.push {reg_list},
-stack_adj

Create stack frame: push registers, allocate additional
stack space.

yes yes cm.pop {reg_list}, stack_adj Pop registers, deallocate stack frame.

yes yes cm.popret {reg_list},
stack_adj

Pop registers, deallocate stack frame, return.

yes yes cm.popretz {reg_list},
stack_adj

Pop registers, deallocate stack frame, return zero.

yes yes cm.mva01s sreg1, sreg2 Move two s0-s7 registers into a0-a1

yes yes cm.mvsa01 sreg1, sreg2 Move a0-a1 into two different s0-s7 registers

6

1.8. Zcmt
Zcmt adds the table jump instructions and also adds the JVT CSR. The JVT CSR requires a state
enable if Smstateen is implemented. See JVT CSR, table jump base vector and control register for
details.

This extension reuses some encodings from c.fsdsp. Therefore it is incompatible with Zcd, which is
included when C and D extensions are both present.

The Zcmt extension depends on the Zca and Zicsr extensions.

RV32 RV64 Mnemonic Instruction

yes yes cm.jt index Jump via table

yes yes cm.jalt index Jump and link via table

7

1.9. c.lbu
Synopsis

Load unsigned byte, 16-bit encoding

Mnemonic

c.lbu rd', uimm(rs1')

Encoding (RV32, RV64)

0124567910121315

00rd'uimm[0|1]rs1'000001

C0FUNCT3

The immediate offset is formed as follows:

 uimm[31:2] = 0;
 uimm[1] = encoding[5];
 uimm[0] = encoding[6];

Description

This instruction loads a byte from the memory address formed by adding rs1' to the zero
extended immediate uimm. The resulting byte is zero extended to XLEN bits and is written to rd'.

NOTE rd' and rs1' are from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

[insns-lbu]

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

X(rdc) = EXTZ(mem[X(rs1c)+EXTZ(uimm)][7..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

8

1.10. c.lhu
Synopsis

Load unsigned halfword, 16-bit encoding

Mnemonic

c.lhu rd', uimm(rs1')

Encoding (RV32, RV64)

0124567910121315

00rd'uimm[1]0rs1'100001

C0FUNCT3

The immediate offset is formed as follows:

 uimm[31:2] = 0;
 uimm[1] = encoding[5];
 uimm[0] = 0;

Description

This instruction loads a halfword from the memory address formed by adding rs1' to the zero
extended immediate uimm. The resulting halfword is zero extended to XLEN bits and is written
to rd'.

NOTE rd' and rs1' are from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

[insns-lhu]

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

X(rdc) = EXTZ(load_mem[X(rs1c)+EXTZ(uimm)][15..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

9

1.11. c.lh
Synopsis

Load signed halfword, 16-bit encoding

Mnemonic

c.lh rd', uimm(rs1')

Encoding (RV32, RV64)

0124567910121315

00rd'uimm[1]1rs1'100001

C0FUNCT3

The immediate offset is formed as follows:

 uimm[31:2] = 0;
 uimm[1] = encoding[5];
 uimm[0] = 0;

Description

This instruction loads a halfword from the memory address formed by adding rs1' to the zero
extended immediate uimm. The resulting halfword is sign extended to XLEN bits and is written
to rd'.

NOTE rd' and rs1' are from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

[insns-lh]

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

X(rdc) = EXTS(load_mem[X(rs1c)+EXTZ(uimm)][15..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

10

1.12. c.sb
Synopsis

Store byte, 16-bit encoding

Mnemonic

c.sb rs2', uimm(rs1')

Encoding (RV32, RV64)

0124567910121315

00rs2'uimm[0|1]rs1'010001

C0FUNCT3

The immediate offset is formed as follows:

 uimm[31:2] = 0;
 uimm[1] = encoding[5];
 uimm[0] = encoding[6];

Description

This instruction stores the least significant byte of rs2' to the memory address formed by adding
rs1' to the zero extended immediate uimm.

NOTE rs1' and rs2' are from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

[insns-sb]

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

mem[X(rs1c)+EXTZ(uimm)][7..0] = X(rs2c)

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

11

1.13. c.sh
Synopsis

Store halfword, 16-bit encoding

Mnemonic

c.sh rs2', uimm(rs1')

Encoding (RV32, RV64)

0124567910121315

00rs2'uimm[1]0rs1'110001

C0FUNCT3

The immediate offset is formed as follows:

 uimm[31:2] = 0;
 uimm[1] = encoding[5];
 uimm[0] = 0;

Description

This instruction stores the least significant halfword of rs2' to the memory address formed by
adding rs1' to the zero extended immediate uimm.

NOTE rs1' and rs2' are from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

[insns-sh]

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

mem[X(rs1c)+EXTZ(uimm)][15..0] = X(rs2c)

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

12

1.14. c.zext.b
Synopsis

Zero extend byte, 16-bit encoding

Mnemonic

c.zext.b rsd'

Encoding (RV32, RV64)

0124567910121315

1000011rsd'111001

C1C.ZEXT.BFUNCT2SRCDSTFUNCT3

Description

This instruction takes a single source/destination operand. It zero-extends the least-significant
byte of the operand to XLEN bits by inserting zeros into all of the bits more significant than 7.

NOTE rsd' is from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

andi rsd, rsd, 0xff

NOTE The SAIL module variable for rsd' is called rsdc.

Operation

X(rsdc) = EXTZ(X(rsdc)[7..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

13

1.15. c.sext.b
Synopsis

Sign extend byte, 16-bit encoding

Mnemonic

c.sext.b rsd'

Encoding (RV32, RV64)

0124567910121315

1010011rsd'111001

C1C.SEXT.BFUNCT2SRCDSTFUNCT3

Description

This instruction takes a single source/destination operand. It sign-extends the least-significant
byte in the operand to XLEN bits by copying the most-significant bit in the byte (i.e., bit 7) to all
of the more-significant bits.

NOTE rsd' is from the standard 8-register set x8-x15.

Prerequisites

Zbb is also required.

32-bit equivalent

[insns-sext_b] from Zbb

NOTE The SAIL module variable for rsd' is called rsdc.

Operation

X(rsdc) = EXTS(X(rsdc)[7..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

14

1.16. c.zext.h
Synopsis

Zero extend halfword, 16-bit encoding

Mnemonic

c.zext.h rsd'

Encoding (RV32, RV64)

0124567910121315

1001011rsd'111001

C1C.ZEXT.HFUNCT2SRCDSTFUNCT3

Description

This instruction takes a single source/destination operand. It zero-extends the least-significant
halfword of the operand to XLEN bits by inserting zeros into all of the bits more significant than
15.

NOTE rsd' is from the standard 8-register set x8-x15.

Prerequisites

Zbb is also required.

32-bit equivalent

[insns-zext_h] from Zbb

NOTE The SAIL module variable for rsd' is called rsdc.

Operation

X(rsdc) = EXTZ(X(rsdc)[15..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

15

1.17. c.sext.h
Synopsis

Sign extend halfword, 16-bit encoding

Mnemonic

c.sext.h rsd'

Encoding (RV32, RV64)

0124567910121315

1011011rsd'111001

C1C.SEXT.HFUNCT2SRCDSTFUNCT3

Description

This instruction takes a single source/destination operand. It sign-extends the least-significant
halfword in the operand to XLEN bits by copying the most-significant bit in the halfword (i.e., bit
15) to all of the more-significant bits.

NOTE rsd' is from the standard 8-register set x8-x15.

Prerequisites

Zbb is also required.

32-bit equivalent

[insns-sext_h] from Zbb

NOTE The SAIL module variable for rsd' is called rsdc.

Operation

X(rsdc) = EXTS(X(rsdc)[15..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

16

1.18. c.zext.w
Synopsis

Zero extend word, 16-bit encoding

Mnemonic

c.zext.w rsd'

Encoding (RV64)

0124567910121315

1000111rsd'111001

C1C.ZEXT.WFUNCT2SRCDSTFUNCT3

Description

This instruction takes a single source/destination operand. It zero-extends the least-significant
word of the operand to XLEN bits by inserting zeros into all of the bits more significant than 31.

NOTE rsd' is from the standard 8-register set x8-x15.

Prerequisites

Zba is also required.

32-bit equivalent

add.uw rsd', rsd', zero

NOTE The SAIL module variable for rsd' is called rsdc.

Operation

X(rsdc) = EXTZ(X(rsdc)[31..0]);

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

17

1.19. c.not
Synopsis

Bitwise not, 16-bit encoding

Mnemonic

c.not rsd'

Encoding (RV32, RV64)

0124567910121315

1010111rsd'111001

C1C.NOTFUNCT2SRCDSTFUNCT3

Description

This instruction takes the one’s complement of rsd' and writes the result to the same register.

NOTE rsd' is from the standard 8-register set x8-x15.

Prerequisites

None

32-bit equivalent

xori rd, rs, -1

NOTE The SAIL module variable for rsd' is called rsdc.

Operation

X(rsdc) = X(rsdc) XOR -1;

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

18

1.20. c.mul
Synopsis

Multiply, 16-bit encoding

Mnemonic

c.mul rsd', rs2'

Encoding (RV32, RV64)

0124567910121315

10rs2'01rsd'111001

C1SRC2FUNCT2SRCDSTFUNCT3

Description

This instruction multiplies XLEN bits of the source operands from rsd' and rs2' and writes the
lowest XLEN bits of the result to rsd'.

NOTE rsd' and rs2' are from the standard 8-register set x8-x15.

Prerequisites

M or Zmmul must be configured.

32-bit equivalent

[insns-mul]

NOTE The SAIL module variable for rsd' is called rsdc, and for rs2' is called rs2c.

Operation

let result_wide = to_bits(2 * sizeof(xlen), signed(X(rsdc)) * signed(X(rs2c)));
X(rsdc) = result_wide[(sizeof(xlen) - 1) .. 0];

Included in

Extension Minimum version Lifecycle state

Zcb (Zcb) v1.0.0-RC5.7 frozen

19

2. PUSH/POP register instructions
These instructions are collectively referred to as PUSH/POP:

• Create stack frame: push registers, allocate additional stack space.

• Pop registers, deallocate stack frame.

• Pop registers, deallocate stack frame, return.

• Pop registers, deallocate stack frame, return zero.

The term PUSH refers to cm.push.

The term POP refers to cm.pop.

The term POPRET refers to cm.popret and cm.popretz.

Common details for these instructions are in this section.

2.1. PUSH/POP functional overview
PUSH, POP, POPRET are used to reduce the size of function prologues and epilogues.

1. The PUSH instruction

◦ adjusts the stack pointer to create the stack frame

◦ pushes (stores) the registers specified in the register list to the stack frame

2. The POP instruction

◦ pops (loads) the registers in the register list from the stack frame

◦ adjusts the stack pointer to destroy the stack frame

3. The POPRET instructions

◦ pop (load) the registers in the register list from the stack from

◦ cm.popretz also moves zero into a0 as the return value

◦ adjust the stack pointer to destroy the stack frame

◦ execute a ret instruction to return from the function

20

2.2. Example usage
This example gives an illustration of the use of PUSH and POPRET.

The function processMarkers in the EMBench benchmark picojpeg in the following file on github:
libpicojpeg.c

The prologue and epilogue compile with GCC10 to:

 0001098a <processMarkers>:
 1098a: 711d addi sp,sp,-96 ;#cm.push(1)
 1098c: c8ca sw s2,80(sp) ;#cm.push(2)
 1098e: c6ce sw s3,76(sp) ;#cm.push(3)
 10990: c4d2 sw s4,72(sp) ;#cm.push(4)
 10992: ce86 sw ra,92(sp) ;#cm.push(5)
 10994: cca2 sw s0,88(sp) ;#cm.push(6)
 10996: caa6 sw s1,84(sp) ;#cm.push(7)
 10998: c2d6 sw s5,68(sp) ;#cm.push(8)
 1099a: c0da sw s6,64(sp) ;#cm.push(9)
 1099c: de5e sw s7,60(sp) ;#cm.push(10)
 1099e: dc62 sw s8,56(sp) ;#cm.push(11)
 109a0: da66 sw s9,52(sp) ;#cm.push(12)
 109a2: d86a sw s10,48(sp);#cm.push(13)
 109a4: d66e sw s11,44(sp);#cm.push(14)
...
 109f4: 4501 li a0,0 ;#cm.popretz(1)
 109f6: 40f6 lw ra,92(sp) ;#cm.popretz(2)
 109f8: 4466 lw s0,88(sp) ;#cm.popretz(3)
 109fa: 44d6 lw s1,84(sp) ;#cm.popretz(4)
 109fc: 4946 lw s2,80(sp) ;#cm.popretz(5)
 109fe: 49b6 lw s3,76(sp) ;#cm.popretz(6)
 10a00: 4a26 lw s4,72(sp) ;#cm.popretz(7)
 10a02: 4a96 lw s5,68(sp) ;#cm.popretz(8)
 10a04: 4b06 lw s6,64(sp) ;#cm.popretz(9)
 10a06: 5bf2 lw s7,60(sp) ;#cm.popretz(10)
 10a08: 5c62 lw s8,56(sp) ;#cm.popretz(11)
 10a0a: 5cd2 lw s9,52(sp) ;#cm.popretz(12)
 10a0c: 5d42 lw s10,48(sp);#cm.popretz(13)
 10a0e: 5db2 lw s11,44(sp);#cm.popretz(14)
 10a10: 6125 addi sp,sp,96 ;#cm.popretz(15)
 10a12: 8082 ret ;#cm.popretz(16)

21

https://github.com/embench/embench-iot/blob/master/src/picojpeg/libpicojpeg.c

with the GCC option -msave-restore the output is the following:

0001080e <processMarkers>:
 1080e: 73a012ef jal t0,11f48 <__riscv_save_12>
 10812: 1101 addi sp,sp,-32
...
 10862: 4501 li a0,0
 10864: 6105 addi sp,sp,32
 10866: 71e0106f j 11f84 <__riscv_restore_12>

with PUSH/POPRET this reduces to

0001080e <processMarkers>:
 1080e: b8fa cm.push {ra,s0-s11},-96
...
 10866: bcfa cm.popretz {ra,s0-s11}, 96

The prologue / epilogue reduce from 60-bytes in the original code, to 14-bytes with -msave-restore,
and to 4-bytes with PUSH and POPRET. As well as reducing the code-size PUSH and POPRET
eliminate the branches from calling the millicode save/restore routines and so may also perform
better.

NOTE
The calls to <riscv_save_0>/<riscv_restore_0> become 64-bit when the target
functions are out of the ±1MB range, increasing the prologue/epilogue size to 22-
bytes.

NOTE
POP is typically used in tail-calling sequences where ret is not used to return to ra
after destroying the stack frame.

2.2.1. Stack pointer adjustment handling

The instructions all automatically adjust the stack pointer by enough to cover the memory required
for the registers being saved or restored. Additionally the spimm field in the encoding allows the
stack pointer to be adjusted in additional increments of 16-bytes. There is only a small restricted
range available in the encoding; if the range is insufficient then a separate c.addi16sp can be used
to increase the range.

2.2.2. Register list handling

There is no support for the {ra, s0-s10} register list without also adding s11. Therefore the {ra, s0-
s11} register list must be used in this case.

2.3. PUSH/POP Fault handling
Correct execution requires that sp refers to idempotent memory (also see Non-idempotent memory
handling), because the core must be able to handle traps detected during the sequence. The entire

22

PUSH/POP sequence is re-executed after returning from the trap handler, and multiple traps are
possible during the sequence.

If a trap occurs during the sequence then xEPC is updated with the PC of the instruction, xTVAL (if
not read-only-zero) updated with the bad address if it was an access fault and xCAUSE updated with
the type of trap.

NOTE
It is implementation defined whether interrupts can also be taken during the
sequence execution.

2.4. Software view of execution

2.4.1. Software view of the PUSH sequence

From a software perspective the PUSH sequence appears as:

• A sequence of stores writing the bytes required by the pseudo-code

◦ The bytes may be written in any order.

◦ The bytes may be grouped into larger accesses.

◦ Any of the bytes may be written multiple times.

• A stack pointer adjustment

NOTE

If an implementation allows interrupts during the sequence, and the interrupt
handler uses sp to allocate stack memory, then any stores which were executed
before the interrupt may be overwritten by the handler. This is safe because the
memory is idempotent and the stores will be re-executed when execution resumes.

The stack pointer adjustment must only be committed only when it is certain that the entire PUSH
instruction will commit.

Stores may also return imprecise faults from the bus. It is platform defined whether the core
implementation waits for the bus responses before continuing to the final stage of the sequence, or
handles errors responses after completing the PUSH instruction.

23

For example:

cm.push {ra, s0-s5}, -64

Appears to software as:

any bytes from sp-1 to sp-28 may be written multiple times before
the instruction completes therefore these updates may be visible in
the interrupt/exception handler below the stack pointer
sw s5, -4(sp)
sw s4, -8(sp)
sw s3,-12(sp)
sw s2,-16(sp)
sw s1,-20(sp)
sw s0,-24(sp)
sw ra,-28(sp)

this must only execute once, and will only execute after all stores
completed without any precise faults, therefore this update is only
visible in the interrupt/exception handler if cm.push has completed
addi sp, sp, -64

2.4.2. Software view of the POP/POPRET sequence

From a software perspective the POP/POPRET sequence appears as:

• A sequence of loads reading the bytes required by the pseudo-code.

◦ The bytes may be loaded in any order.

◦ The bytes may be grouped into larger accesses.

◦ Any of the bytes may be loaded multiple times.

• A stack pointer adjustment

• An optional li a0, 0

• An optional ret

If a trap occurs during the sequence, then any loads which were executed before the trap may
update architectural state. The loads will be re-executed once the trap handler completes, so the
values will be overwritten. Therefore it is permitted for an implementation to update some of the
destination registers before taking a fault.

The optional li a0, 0, stack pointer adjustment and optional ret must only be committed only
when it is certain that the entire POP/POPRET instruction will commit.

For POPRET once the stack pointer adjustment has been committed the ret must execute.

24

For example:

cm.popretz {ra, s0-s3}, 32;

Appears to software as:

any or all of these load instructions may execute multiple times
therefore these updates may be visible in the interrupt/exception handler
lw s3, 28(sp)
lw s2, 24(sp)
lw s1, 20(sp)
lw s0, 16(sp)
lw ra, 12(sp)

these must only execute once, will only execute after all loads
complete successfully all instructions must execute atomically
therefore these updates are not visible in the interrupt/exception handler
li a0, 0
addi sp, sp, 32
ret

2.5. Non-idempotent memory handling
An implementation may have a requirement to issue a PUSH/POP instruction to non-idempotent
memory.

If the core implementation does not support PUSH/POP to non-idempotent memories, the core may
use an idempotency PMA to detect it and take a load (POP/POPRET) or store (PUSH) access fault
exception in order to avoid unpredictable results.

If the core implementation does support PUSH/POP to non-idempotent memory, then it may not be
possible to re-execute the sequence after a fault. In this case the fault handler should complete the
sequence in software. In this case xTVAL must be written with the bad address to allow the handler
to complete the sequence.

25

2.6. Example RV32I PUSH/POP sequences
The examples are included show the load/store series expansion and the stack adjustment.
Examples of cm.popret and cm.popretz are not included, as the difference in the expanded sequence
from cm.pop is trivial in all cases.

2.6.1. cm.push {ra, s0-s2}, -64

Encoding: rlist=7, spimm=3

expands to:

sw s2, -4(sp);
sw s1, -8(sp);
sw s0, -12(sp);
sw ra, -16(sp);
addi sp, sp, -64;

2.6.2. cm.push {ra, s0-s11}, -112

Encoding: rlist=15, spimm=3

expands to:

sw s11, -4(sp);
sw s10, -8(sp);
sw s9, -12(sp);
sw s8, -16(sp);
sw s7, -20(sp);
sw s6, -24(sp);
sw s5, -28(sp);
sw s4, -32(sp);
sw s3, -36(sp);
sw s2, -40(sp);
sw s1, -44(sp);
sw s0, -48(sp);
sw ra, -52(sp);
addi sp, sp, -112;

26

2.6.3. cm.pop {ra}, 16

Encoding: rlist=4, spimm=0

expands to:

lw ra, 12(sp);
addi sp, sp, 16;

2.6.4. cm.pop {ra, s0-s3}, 48

Encoding: rlist=8, spimm=1

expands to:

lw s3, 44(sp);
lw s2, 40(sp);
lw s1, 36(sp);
lw s0, 32(sp);
lw ra, 28(sp);
addi sp, sp, 48;

2.6.5. cm.pop {ra, s0-s4}, 64

Encoding: rlist=9, spimm=2

expands to:

lw s4, 60(sp);
lw s3, 56(sp);
lw s2, 52(sp);
lw s1, 48(sp);
lw s0, 44(sp);
lw ra, 40(sp);
addi sp, sp, 64;

Included in

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

27

2.7. cm.push
Synopsis

Create stack frame: store ra and 0 to 12 saved registers to the stack frame, optionally allocate
additional stack space.

Mnemonic

cm.push {reg_list}, -stack_adj

Encoding (RV32, RV64)

0123478121315

01spimm[5:4]rlist00011101

C2FUNCT3

NOTE rlist values 0 to 3 are reserved for a future EABI variant called cm.push.e

Assembly Syntax

cm.push {reg_list}, -stack_adj
cm.push {xreg_list}, -stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RV64:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
 case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
 case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
 case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
 case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
 case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
 case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}

28

 case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
 //note - to include s10, s11 must also be included
 case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;
Valid values:
stack_adj = [16|32|48|64];

RV32I:

switch (rlist) {
 case 4.. 7: stack_adj_base = 16;
 case 8..11: stack_adj_base = 32;
 case 12..14: stack_adj_base = 48;
 case 15: stack_adj_base = 64;
}

Valid values:
switch (rlist) {
 case 4.. 7: stack_adj = [16|32|48| 64];
 case 8..11: stack_adj = [32|48|64| 80];
 case 12..14: stack_adj = [48|64|80| 96];
 case 15: stack_adj = [64|80|96|112];
}

RV64:

switch (rlist) {
 case 4.. 5: stack_adj_base = 16;
 case 6.. 7: stack_adj_base = 32;
 case 8.. 9: stack_adj_base = 48;
 case 10..11: stack_adj_base = 64;
 case 12..13: stack_adj_base = 80;
 case 14: stack_adj_base = 96;
 case 15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
 case 4.. 5: stack_adj = [16| 32| 48| 64];
 case 6.. 7: stack_adj = [32| 48| 64| 80];
 case 8.. 9: stack_adj = [48| 64| 80| 96];

29

 case 10..11: stack_adj = [64| 80| 96|112];
 case 12..13: stack_adj = [80| 96|112|128];
 case 14: stack_adj = [96|112|128|144];
 case 15: stack_adj = [112|128|144|160];
}

30

Description

This instruction pushes (stores) the registers in reg_list to the memory below the stack pointer,
and then creates the stack frame by decrementing the stack pointer by stack_adj, including any
additional stack space requested by the value of spimm.

NOTE
All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.

For further information see PUSH/POP Register Instructions.

Stack Adjustment Calculation

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments,
required to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base
added to spimm scaled by 16, as defined above.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists

Operation

The first section of pseudo-code may be executed multiple times before the instruction
successfully completes.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

if (XLEN==32) bytes=4; else bytes=8;

addr=sp-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
 //if register i is in xreg_list
 if (xreg_list[i]) {
 switch(bytes) {
 4: asm("sw x[i], 0(addr)");
 8: asm("sd x[i], 0(addr)");
 }
 addr-=bytes;
 }
}

The final section of pseudo-code executes atomically, and only executes if the section above
completes without any exceptions or interrupts.

31

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

sp-=stack_adj;

Included in

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

32

2.8. cm.pop
Synopsis

Destroy stack frame: load ra and 0 to 12 saved registers from the stack frame, deallocate the
stack frame.

Mnemonic

cm.pop {reg_list}, stack_abj

Encoding (RV32, RV64)

0123478121315

01spimm[5:4]rlist01011101

C2FUNCT3

NOTE rlist values 0 to 3 are reserved for a future EABI variant called cm.pop.e

Assembly Syntax

cm.pop {reg_list}, stack_adj
cm.pop {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RV64:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
 case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
 case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
 case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
 case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
 case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
 case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}

33

 case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
 //note - to include s10, s11 must also be included
 case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;
Valid values:
stack_adj = [16|32|48|64];

RV32I:

switch (rlist) {
 case 4.. 7: stack_adj_base = 16;
 case 8..11: stack_adj_base = 32;
 case 12..14: stack_adj_base = 48;
 case 15: stack_adj_base = 64;
}

Valid values:
switch (rlist) {
 case 4.. 7: stack_adj = [16|32|48| 64];
 case 8..11: stack_adj = [32|48|64| 80];
 case 12..14: stack_adj = [48|64|80| 96];
 case 15: stack_adj = [64|80|96|112];
}

RV64:

switch (rlist) {
 case 4.. 5: stack_adj_base = 16;
 case 6.. 7: stack_adj_base = 32;
 case 8.. 9: stack_adj_base = 48;
 case 10..11: stack_adj_base = 64;
 case 12..13: stack_adj_base = 80;
 case 14: stack_adj_base = 96;
 case 15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
 case 4.. 5: stack_adj = [16| 32| 48| 64];
 case 6.. 7: stack_adj = [32| 48| 64| 80];
 case 8.. 9: stack_adj = [48| 64| 80| 96];

34

 case 10..11: stack_adj = [64| 80| 96|112];
 case 12..13: stack_adj = [80| 96|112|128];
 case 14: stack_adj = [96|112|128|144];
 case 15: stack_adj = [112|128|144|160];
}

35

Description

This instruction pops (loads) the registers in reg_list from stack memory, and then adjusts the
stack pointer by stack_adj.

NOTE
All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.

For further information see PUSH/POP Register Instructions.

Stack Adjustment Calculation

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments,
required to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base
added to spimm scaled by 16, as defined above.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists

Operation

The first section of pseudo-code may be executed multiple times before the instruction
successfully completes.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
 //if register i is in xreg_list
 if (xreg_list[i]) {
 switch(bytes) {
 4: asm("lw x[i], 0(addr)");
 8: asm("ld x[i], 0(addr)");
 }
 addr-=bytes;
 }
}

The final section of pseudo-code executes atomically, and only executes if the section above
completes without any exceptions or interrupts.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

36

sp+=stack_adj;

Included in

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

37

2.9. cm.popretz
Synopsis

Destroy stack frame: load ra and 0 to 12 saved registers from the stack frame, deallocate the
stack frame, move zero into a0, return to ra.

Mnemonic

cm.popretz {reg_list}, stack_adj

Encoding (RV32, RV64)

0123478121315

01spimm[5:4]rlist00111101

C2FUNCT3

NOTE rlist values 0 to 3 are reserved for a future EABI variant called cm.popretz.e

Assembly Syntax

cm.popretz {reg_list}, stack_adj
cm.popretz {xreg_list}, stack_adj

RV32E:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RV64:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
 case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
 case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
 case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
 case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
 case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
 case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}
 case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
 //note - to include s10, s11 must also be included

38

 case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;
Valid values:
stack_adj = [16|32|48|64];

RV32I:

switch (rlist) {
 case 4.. 7: stack_adj_base = 16;
 case 8..11: stack_adj_base = 32;
 case 12..14: stack_adj_base = 48;
 case 15: stack_adj_base = 64;
}

Valid values:
switch (rlist) {
 case 4.. 7: stack_adj = [16|32|48| 64];
 case 8..11: stack_adj = [32|48|64| 80];
 case 12..14: stack_adj = [48|64|80| 96];
 case 15: stack_adj = [64|80|96|112];
}

RV64:

switch (rlist) {
 case 4.. 5: stack_adj_base = 16;
 case 6.. 7: stack_adj_base = 32;
 case 8.. 9: stack_adj_base = 48;
 case 10..11: stack_adj_base = 64;
 case 12..13: stack_adj_base = 80;
 case 14: stack_adj_base = 96;
 case 15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
 case 4.. 5: stack_adj = [16| 32| 48| 64];
 case 6.. 7: stack_adj = [32| 48| 64| 80];
 case 8.. 9: stack_adj = [48| 64| 80| 96];
 case 10..11: stack_adj = [64| 80| 96|112];
 case 12..13: stack_adj = [80| 96|112|128];

39

 case 14: stack_adj = [96|112|128|144];
 case 15: stack_adj = [112|128|144|160];
}

40

Description

This instruction pops (loads) the registers in reg_list from stack memory, adjusts the stack
pointer by stack_adj, moves zero into a0 and then returns to ra.

NOTE
All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.

For further information see PUSH/POP Register Instructions.

Stack Adjustment Calculation

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments,
required to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base
added to spimm scaled by 16, as defined above.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists

Operation

The first section of pseudo-code may be executed multiple times before the instruction
successfully completes.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
 //if register i is in xreg_list
 if (xreg_list[i]) {
 switch(bytes) {
 4: asm("lw x[i], 0(addr)");
 8: asm("ld x[i], 0(addr)");
 }
 addr-=bytes;
 }
}

The final section of pseudo-code executes atomically, and only executes if the section above
completes without any exceptions or interrupts.

NOTE The li a0, 0 could be executed more than once, but is included in the atomic section

41

for convenience.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

asm("li a0, 0");
sp+=stack_adj;
asm("ret");

Included in

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

42

2.10. cm.popret
Synopsis

Destroy stack frame: load ra and 0 to 12 saved registers from the stack frame, deallocate the
stack frame, return to ra.

Mnemonic

cm.popret {reg_list}, stack_adj

Encoding (RV32, RV64)

0123478121315

01spimm[5:4]rlist01111101

C2FUNCT3

NOTE rlist values 0 to 3 are reserved for a future EABI variant called cm.popret.e

Assembly Syntax

cm.popret {reg_list}, stack_adj
cm.popret {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RV64:

switch (rlist){
 case 4: {reg_list="ra"; xreg_list="x1";}
 case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
 case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}
 case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
 case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
 case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
 case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
 case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
 case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
 case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}

43

 case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
 //note - to include s10, s11 must also be included
 case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
 default: reserved();
}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;
Valid values:
stack_adj = [16|32|48|64];

RV32I:

switch (rlist) {
 case 4.. 7: stack_adj_base = 16;
 case 8..11: stack_adj_base = 32;
 case 12..14: stack_adj_base = 48;
 case 15: stack_adj_base = 64;
}

Valid values:
switch (rlist) {
 case 4.. 7: stack_adj = [16|32|48| 64];
 case 8..11: stack_adj = [32|48|64| 80];
 case 12..14: stack_adj = [48|64|80| 96];
 case 15: stack_adj = [64|80|96|112];
}

RV64:

switch (rlist) {
 case 4.. 5: stack_adj_base = 16;
 case 6.. 7: stack_adj_base = 32;
 case 8.. 9: stack_adj_base = 48;
 case 10..11: stack_adj_base = 64;
 case 12..13: stack_adj_base = 80;
 case 14: stack_adj_base = 96;
 case 15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
 case 4.. 5: stack_adj = [16| 32| 48| 64];
 case 6.. 7: stack_adj = [32| 48| 64| 80];
 case 8.. 9: stack_adj = [48| 64| 80| 96];

44

 case 10..11: stack_adj = [64| 80| 96|112];
 case 12..13: stack_adj = [80| 96|112|128];
 case 14: stack_adj = [96|112|128|144];
 case 15: stack_adj = [112|128|144|160];
}

45

Description

This instruction pops (loads) the registers in reg_list from stack memory, adjusts the stack
pointer by stack_adj and then returns to ra.

NOTE
All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.

For further information see PUSH/POP Register Instructions.

Stack Adjustment Calculation

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments,
required to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base
added to spimm scaled by 16, as defined above.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists

Operation

The first section of pseudo-code may be executed multiple times before the instruction
successfully completes.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
 //if register i is in xreg_list
 if (xreg_list[i]) {
 switch(bytes) {
 4: asm("lw x[i], 0(addr)");
 8: asm("ld x[i], 0(addr)");
 }
 addr-=bytes;
 }
}

The final section of pseudo-code executes atomically, and only executes if the section above
completes without any exceptions or interrupts.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

46

sp+=stack_adj;
asm("ret");

Included in

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

47

2.11. cm.mvsa01
Synopsis

Move a0-a1 into two registers of s0-s7

Mnemonic

cm.mvsa01 sreg1, sreg2

Encoding (RV32, RV64)

0124567910121315

01sreg210sreg1110101

C2FUNCT3

NOTE For the encoding to be legal sreg1 != sreg2.

Assembly Syntax

cm.mvsa01 sreg1, sreg2

Description

This instruction moves a0 into sreg1 and a1 into sreg2. sreg1 and sreg2 must be different. The
execution is atomic, so it is not possible to observe state where only one of sreg1 or sreg2 has
been updated.

The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding space.
The mapping between them is specified in the pseudo-code below.

NOTE
The s register mapping is taken from the UABI, and may not match the currently
unratified EABI. cm.mvsa01.e may be included in the future.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists.

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (RV32E && (sreg1>1 || sreg2>1)) {
 reserved();
}
xreg1 = {sreg1[2:1]>0,sreg1[2:1]==0,sreg1[2:0]};
xreg2 = {sreg2[2:1]>0,sreg2[2:1]==0,sreg2[2:0]};
X[xreg1] = X[10];
X[xreg2] = X[11];

48

Included in

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

49

2.12. cm.mva01s
Synopsis

Move two s0-s7 registers into a0-a1

Mnemonic

cm.mva01s sreg1, sreg2

Encoding (RV32, RV64)

0124567910121315

01sreg211sreg1110101

C2FUNCT3

Assembly Syntax

cm.mva01s sreg1, sreg2

Description

This instruction moves sreg1 into a0 and sreg2 into a1. The execution is atomic, so it is not
possible to observe state where only one of a0 or a1 have been updated.

The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding space.
The mapping between them is specified in the pseudo-code below.

NOTE
The s register mapping is taken from the UABI, and may not match the currently
unratified EABI. cm.mva01s.e may be included in the future.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists.

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (RV32E && (sreg1>1 || sreg2>1)) {
 reserved();
}
xreg1 = {sreg1[2:1]>0,sreg1[2:1]==0,sreg1[2:0]};
xreg2 = {sreg2[2:1]>0,sreg2[2:1]==0,sreg2[2:0]};
X[10] = X[xreg1];
X[11] = X[xreg2];

Included in

50

Extension Minimum version Lifecycle state

Zcmp (Zcmp) v1.0.0-RC5.7 frozen

51

3. Table Jump Overview
cm.jt (Jump via table) and cm.jalt (Jump and link via table) are referred to as table jump.

Table jump uses a 256-entry XLEN wide table in instruction memory to contain function addresses.
The table must be a minimum of 64-byte aligned.

Table entries follow the current data endianness. This is different from normal instruction fetch
which is always little-endian.

cm.jt and cm.jalt encodings index the table, giving access to functions within the full XLEN wide
address space.

This is used as a form of dictionary compression to reduce the code size of jal / auipc+jalr / jr /
auipc+jr instructions.

Table jump allows the linker to replace the following instruction sequences with a cm.jt or cm.jalt
encoding, and an entry in the table:

• 32-bit j calls

• 32-bit jal ra calls

• 64-bit auipc+jr calls to fixed locations

• 64-bit auipc+jalr ra calls to fixed locations

◦ The auipc+jr/jalr sequence is used because the offset from the PC is out of the ±1MB range.

If a return address stack is implemented, then as cm.jalt is equivalent to jal ra, it pushes to the
stack.

3.1. JVT
The base of the table is in the JVT CSR (see JVT CSR, table jump base vector and control register),
each table entry is XLEN bits.

If the same function is called with and without linking then it must have two entries in the table.
This is typically caused by the same function being called with and without tail calling.

3.2. Table Jump Fault handling
For a table jump instruction, the table entry that the instruction selects is considered an extension
of the instruction itself. Hence, the execution of a table jump instruction involves two instruction
fetches, the first to read the instruction (cm.jt/cm.jalt) and the second to read from the jump vector
table (JVT). Both instruction fetches are implicit reads, and both require execute permission; read
permission is irrelevant. It is recommended that the second fetch be ignored for hardware triggers
and breakpoints.

Memory writes to the jump vector table require an instruction barrier (fence.i) to guarantee that
they are visible to the instruction fetch.

52

Multiple contexts may have different jump vector tables. JVT may be switched between them
without an instruction barrier if the tables have not been updated in memory since the last fence.i.

If an exception occurs on either instruction fetch, xEPC is set to the PC of the table jump instruction,
xCAUSE is set as expected for the type of fault and xTVAL (if not set to zero) contains the fetch
address which caused the fault.

Included in

Extension Minimum version Lifecycle state

Zcmt (Zcmt) v1.0.0-RC5.7 frozen

53

3.3. JVT CSR
Synopsis

Table jump base vector and control register

Address

0x0017

Permissions

URW

Format (RV32)

05631

modebase[XLEN-1:6] (WARL)}

6XLEN-6

Format (RV64)

05663

modebase[XLEN-1:6] (WARL)

6XLEN-6

Description

The JVT register is an XLEN-bit WARL read/write register that holds the jump table
configuration, consisting of the jump table base address (BASE) and the jump table mode
(MODE).

If Zcmt is implemented then JVT must also be implemented, but can contain a read-only value. If
JVT is writable, the set of values the register may hold can vary by implementation. The value in the
BASE field must always be aligned on a 64-byte boundary.

JVT.base is a virtual address, whenever virtual memory is enabled.

The memory pointed to by JVT.base is treated as instruction memory for the purpose of executing
table jump instructions, implying execute access permission.

Table 3. JVT.mode definition

JVT.mode Comment

000000 Jump table mode

others reserved for future
standard use

JVT.mode is a WARL field, so can only be programmed to modes which are implemented. Therefore
the discovery mechanism is to attempt to program different modes and read back the values to see
which are available. Jump table mode must be implemented.

NOTE in future the RISC-V Unified Discovery method will report the available modes.

54

Architectural State

JVT adds architectural state to the system software context (such as an OS process), therefore
must be saved/restored on context switches.

State Enable

If the Smstateen extension is implemented, then bit 2 in mstateen0, sstateen0, and hstateen0 is
implemented. If bit 2 of a controlling stateen0 CSR is zero, then access to the JVT CSR and
execution of a cm.jalt or cm.jt instruction by a lower privilege level results in an Illegal
Instruction trap (or, if appropriate, a Virtual Instruction trap).

Included in

Extension Minimum version Lifecycle state

Zcmt (Zcmt) v1.0.0-RC5.7 frozen

55

3.4. cm.jt
Synopsis

jump via table

Mnemonic

cm.jt index

Encoding (RV32, RV64)

012910121315

01index000101

C2FUNCT3

NOTE
For this encoding to decode as cm.jt, index<32, otherwise it decodes as cm.jalt, see
Jump and link via table.

NOTE
If JVT.mode = 0 (Jump Table Mode) then cm.jt behaves as specified here. If JVT.mode
is a reserved value, then cm.jt is also reserved. In the future other defined values of
JVT.mode may change the behaviour of cm.jt.

Assembly Syntax

cm.jt index

Description

cm.jt reads an entry from the jump vector table in memory and jumps to the address that was
read.

For further information see Table Jump Overview.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists.

56

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

target_address is temporary internal state, it doesn't represent a real register
InstMemory is byte indexed

switch(XLEN) {
 32: table_address[XLEN-1:0] = JVT.base + (index<<2);
 64: table_address[XLEN-1:0] = JVT.base + (index<<3);
}

//fetch from the jump table
target_address[XLEN-1:0] = InstMemory[table_address][XLEN-1:0];

j target_address[XLEN-1:0]&~0x1;

Included in

Extension Minimum version Lifecycle state

Zcmt (Zcmt) v1.0.0-RC5.7 frozen

57

3.5. cm.jalt
Synopsis

jump via table with optional link

Mnemonic

cm.jalt index

Encoding (RV32, RV64)

012910121315

01index000101

C2FUNCT3

NOTE
For this encoding to decode as cm.jalt, index>=32, otherwise it decodes as cm.jt, see
Jump via table.

NOTE
If JVT.mode = 0 (Jump Table Mode) then cm.jalt behaves as specified here. If
JVT.mode is a reserved value, then cm.jalt is also reserved. In the future other
defined values of JVT.mode may change the behaviour of cm.jalt.

Assembly Syntax

cm.jalt index

Description

cm.jalt reads an entry from the jump vector table in memory and jumps to the address that was
read, linking to ra.

For further information see Table Jump Overview.

Prerequisites

None

32-bit equivalent

No direct equivalent encoding exists.

58

Operation

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

target_address is temporary internal state, it doesn't represent a real register
InstMemory is byte indexed

switch(XLEN) {
 32: table_address[XLEN-1:0] = JVT.base + (index<<2);
 64: table_address[XLEN-1:0] = JVT.base + (index<<3);
}

//fetch from the jump table
target_address[XLEN-1:0] = InstMemory[table_address][XLEN-1:0];

jal ra, target_address[XLEN-1:0]&~0x1;

Included in

Extension Minimum version Lifecycle state

Zcmt (Zcmt) v1.0.0-RC5.7 frozen

59

	Untitled
	1. Zc* v1.0.0-RC5.7
	1.1. Change history since v0.70.1 (tagged release)
	1.2. Zc* Overview
	1.3. Zca
	1.4. Zcf (RV32 only)
	1.5. Zcd
	1.6. Zcb
	1.7. Zcmp
	1.8. Zcmt
	1.9. c.lbu
	1.10. c.lhu
	1.11. c.lh
	1.12. c.sb
	1.13. c.sh
	1.14. c.zext.b
	1.15. c.sext.b
	1.16. c.zext.h
	1.17. c.sext.h
	1.18. c.zext.w
	1.19. c.not
	1.20. c.mul

	2. PUSH/POP register instructions
	2.1. PUSH/POP functional overview
	2.2. Example usage
	2.3. PUSH/POP Fault handling
	2.4. Software view of execution
	2.5. Non-idempotent memory handling
	2.6. Example RV32I PUSH/POP sequences
	2.7. cm.push
	2.8. cm.pop
	2.9. cm.popretz
	2.10. cm.popret
	2.11. cm.mvsa01
	2.12. cm.mva01s

	3. Table Jump Overview
	3.1. JVT
	3.2. Table Jump Fault handling
	3.3. JVT CSR
	3.4. cm.jt
	3.5. cm.jalt

