b RISC-V°

RISC-V Supervisor Binary
INnterface Specification

RISC-V Platform Runtime Services Task Group

Version , 2024-09-16: This document is under development. Expect potential changes.

Table of Contents

Preamble e 1
Copyright and license information ... 2
COMEIIDULOIS .. 3
CRANIGE LOG .o 4
VETSION 3.0-TCT oo 4
VTSTOTNY 2.0 Lo 4
VETSION 2.0 -TC8 .o 4
VETSION 20T CT oo 4
VETSION 2.0 -TC0 ..o 4
VETSION 2.0 -TC5 e 4
VETSION 2.0 T 0 ..o 5
VETSION 2.0-TC3 oo 5
VETSION 2.0 7T C2 oo 5
VETSION 2.0-TCT .o 5
VETSION T.0. 0 Lo 5
VETSION 1LO-TCS oo 6
VETSION 1LO-TC2 1o 6
VETSION LO-TCL .o 6
VETSION O.3.0 ..o 6
VEISION O.3-TCT .o 6
VETSIONE 0.2 .o 6
T IEEOAUCTIONY oo 7
2. Terms and ADDIreviations ... 9
3. BINAry ENCOGINE ..o 10
3.1 HATE LIS PATAIMIETOT ... 11
3.2. Shared memory physical address range parameter ... 1
4. Base Extension (EID #0X10) ... 13
4.1. Function: Get SBI specification version (FID #0)...............oiiiioioooioi 13
4.2. Function: Get SBI implementation ID (FID #1) ... 13
4.3. Function: Get SBI implementation version (FID #2)..............o 13
4.4. Function: Probe SBI extension (FID #3) oo 13
4.5. Function: Get machine vendor ID (FID #4) ... 13
4.6. Function: Get machine architecture ID (FID #5) ... 14
4.7. Function: Get machine implementation ID (FID #6) ... 14
4.8, FUNCHION LISTITIG ... 14
4.9, SBI IMPlementation TDIS 14
5. Legacy Extensions (EIDS #0X00 - #OXOF).............oooiiiiiiiiiiiiiiii e 16
5.1. Extension: Set Timer (EID #0X00)t 16
5.2. Extension: Console Putchar (EID #0XO0T) ..o 16
5.3. Extension: Console Getchar (EID #0X02) ..o 17

5.4. Extension: Clear IPT (EID #0XO03).........ooooiiioiiiiiiiiiiiiiiieiioiiooieieoee 17

5.5. Extension: Send IPI (EID #0x04)

5.6. Extension: Remote FENCE.I (EID #0x05)

5.7. Extension: Remote SFENCE.VMA (EID #0x06)

5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)
5.9. Extension: System Shutdown (EID #0x08)

5.10. Function Listing

6. Timer Extension (EID #0x54494D45 "TIME")

6.1. Function: Set Timer (FID #0)

6.2. Function Listing

7. 1PI Extension (EID #0x735049 "sPI: s-mode IP1")

7.1. Function: Send IPI (FID #0)

(2. Function Listing

8. RFENCE Extension (EID #0x52464E43 "RFNC")

8.1. Function: Remote FENCE.I (FID #0)

8.2. Function: Remote SFENCE.VMA (FID #1)

8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
8.5. Function: Remote HFENCE.GVMA (FID #4)

8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
8.7. Function: Remote HFENCE.VVMA (FID #6)

8.8. Function Listing

. Hart State Management Extension (EID #0x48534D "HSM")
9.1. Function: Hart start (FID #0)

9.2. Function: Hart stop (FID #1)

9.3. Function: Hart get status (FID #2)

9.4. Function: Hart suspend (FID #3)

9.5. Function Listing

10. System Reset Extension (EID #0x53525354 "SRST")

10.1. Function: System reset (FID #0)

10.2. Function Listing

11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")

11.1. Event: Hardware general events (Type #0)

11.2. Event: Hardware cache events (Type #1)

11.3. Event: Hardware raw events (Type #2)

114. Event: Hardware raw events v2 (Type #3)

11.5. Event: Firmware events (Type #15)

11.6. Function: Get number of counters (FID #0)

11.7. Function: Get details of a counter (FID #1)

11.8. Function: Find and configure a matching counter (FID #2)
11.9. Function: Start a set of counters (FID #3)

11.10. Function: Stop a set of counters (FID #4)

11.11. Function: Read a firmware counter (FID #5)

11.12. Function: Read a firmware counter high bits (FID #6)

17

17
18
18
18
18
20
20
20
21

21

21
22
22
22
23
23
24
24
25
25
27
28
29
29
30
31
32
32
33
34
35
35
36
37
37
38
38
39
40
41
42
42

11.13. Function: Set PMU snapshot shared memory (FID #7)
11.14. Function: Get PMU Event info (FID #8)
11.15. Function Listing
12. Debug Console Extension (EID #0x4442434E "DBCN")
12.1. Function: Console Write (FID #0)
12.2. Function: Console Read (FID #1)
12.3. Function: Console Write Byte (FID #2)
12.4. Function Listing
13. System Suspend Extension (EID #0x53555350 "SUSP")
13.1. Function: System Suspend (FID #0)
13.2. Function Listing
14. CPPC Extension (EID #0x43505043 "CPPC")
14.1. Function: Probe CPPC register (FID #0)
14.2. Function: Read CPPC register (FID #1)
14.3. Function: Read CPPC register high bits (FID #2)
14.4. Function: Write to CPPC register (FID #3)
14.5. Function Listing
15. Nested Acceleration Extension (EID #0x4E41434C "NACL")
15.1. Feature: Synchronize CSR (ID #0)
15.2. Feature: Synchronize HFENCE (ID #1)
15.3. Feature: Synchronize SRET (ID #2)
15.4. Feature: Autoswap CSR (ID #3)
15.5. Function: Probe nested acceleration feature (FID #0)
15.6. Function: Set nested acceleration shared memory (FID #1)
15.7. Function: Synchronize shared memory CSRs (FID #2)
15.8. Function: Synchronize shared memory HFENCEs (FID #3)
15.9. Function: Synchronize shared memory and emulate SRET (FID #4)
15.10. Function Listing
16. Steal-time Accounting Extension (EID #0x535441"STA")
16.1. Function: Set Steal-time Shared Memory Address (FID #0)
16.2. Function Listing
17. Supervisor Software Events Extension (EID #0x535345 "SSE")
17.1. Software Event Identification
17.2. Software Event States
17.3. Software Event Priority
17.4. Software Event Attributes
17.5. Software Event Injection
17.6. Software Event Completion
17.7. Function: Read software event attributes (FID #0)
17.8. Function: Write software event attributes (FID #1)
17.9. Function: Register a software event (FID #2)
17.10. Function: Unregister a software event (FID #3)
17.11. Function: Enable a software event (FID #4)

43
44
45
46
46
46
47
47
49
49
50
51
52
52
53
53
53
55
56
57
58
60
60
61
61
62
62
63
64
64
65
66
66
67
68
68
70
71
2
73
73
4
75

17.12. Function: Disable a software event (FID #5)
17.13. Function: Complete software event handling (FID #6)
17.14. Function: Inject a software event (FID #7)
17.15. Function: Unmask software events on a hart (FID #8)
17.16. Function: Mask software events on a hart (FID #9)
17.17. Function Listing
18. SBI Firmware Features Extension (EID #0x46574654 "FWFT")
18.1. Function: Firmware Features Set (FID #0)
18.2. Function: Firmware Features Get (FID #1)
18.3. Function Listing
19. Debug Triggers Extension (EID #0x44425452 "DBTR")
19.1. Function: Get number of triggers (FID #0)
19.2. Function: Set trigger shared memory (FID #1)
19.3. Function: Read triggers (FID #2)
19.4. Function: Install triggers (FID #3)
19.5. Function: Update triggers (FID #4)
19.6. Function: Uninstall a set of triggers (FID #5)
19.7. Function: Enable a set of triggers (FID #6)
19.8. Function: Disable a set of triggers (FID #7)
19.9. Function Listing
20. Message Proxy Extension (EID #0x4D505859 “MPXY”)
20.1. SBI MPXY and Dedicated SBI extension rule
20.2. Message Channels
20.3. Message Channel Attributes
20.4. Message Protocol IDs
20.5. Function: Set shared memory (FID #0)
20.6. Function: Get Channel IDs (FID #1)
20.7. Function: Read Channel Attribute (FID #2)
20.8. Function: Write Channel Attribute (FID #3)
20.9. Function: Send Message with Response (FID #4)
20.10. Function: Send Message without Response (FID #5)
20.11. Function: Get Notifications (FID #6)
20.12. Function Listing
21. Experimental SBI Extension Space (EIDs #0x08000000 - #0xO8FFFFFF)
22. Vendor Specific Extension Space (EIDs #0x09000000 - #0x09FFFFFF)
23. Firmware Specific Extension Space (EIDs #0x0A000000 - #0xOAFFFFFF)

References

5
76
6
6
7
7
8
79
80
80
81
81
82
82
83
84
85
86
86
87
88
88
88
88
91
92
93
94
95
96
97
98
99
100
101
102
103

Preamble | Page 1
Preamble

g This document is in the Development state

Expect potential changes.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

http://riscv.org/spec-state

Copyright and license information | Page 2
Copyright and license information
This RISC-V SBI specification is © 2022 RISC-V International.

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full
license text is available at creativecommons.org/licenses/by/4.0/.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

https://creativecommons.org/licenses/by/4.0/

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

Abner Chang <abner.chang@hpe.com>

Al Stone <ahs3@ahs3.net>

Andrew Jones <ajones@ventanamicro.com>
Anup Patel <apatel@ventanamicro.com>

Atish Patra <atishpO4@gmail.com>

Atish Patra <atishp@rivosinc.com>

Bin Meng <bmeng.cn@gmail.com>

Chris Williams <diodesign@tuta.io>

Clément Léger <cleger@rivosinc.com>

Conor Dooley <conor.dooley@microchip.com>
Daniel Schaefer <git@danielschaefer.me>
Esteban Blanc <estblesk@gmail. com>
hasheddan <georgedanielmangum@gmail.com>
Heinrich Schuchardt <xypron.glpk@gmx.de>
Jetf Scheel <jeff@riscv.org>

Jessica Clarke <jrtc27@jrtc27.com>

john <799433746@qq.com>

Konrad Schwarz <konrad.schwarz@siemens.com>
Luo Jia / Zhougqi Jiang <luojia@hust.edu.cn>
Nick Kossifidis <mickflemm@gmail.com>
Palmer Dabbelt <palmer@dabbelt.com>

Paolo Bonzini <pbonzini@redhat.com>

Sean Anderson <seanga2@gmail.com>

Stefano Stabellini <stefano.stabellini@amd.com>
Sunil V L <sunilvl@ventanamicro.com>
Tsukasa OI <research _trasio@irqg.a4lg.com>
Yiting Wang <yiting wang@windriver.com>

Contributors | Page 3

RISC-V Supervisor Binary Interface Specification | © RISC-V International

mailto:abner.chang@hpe.com
mailto:ahs3@ahs3.net
mailto:ajones@ventanamicro.com
mailto:apatel@ventanamicro.com
mailto:atishp04@gmail.com
mailto:atishp@rivosinc.com
mailto:bmeng.cn@gmail.com
mailto:diodesign@tuta.io
mailto:cleger@rivosinc.com
mailto:conor.dooley@microchip.com
mailto:git@danielschaefer.me
mailto:estblcsk@gmail.com
mailto:georgedanielmangum@gmail.com
mailto:xypron.glpk@gmx.de
mailto:jeff@riscv.org
mailto:jrtc27@jrtc27.com
mailto:799433746@qq.com
mailto:konrad.schwarz@siemens.com
mailto:luojia@hust.edu.cn
mailto:mickflemm@gmail.com
mailto:palmer@dabbelt.com
mailto:pbonzini@redhat.com
mailto:seanga2@gmail.com
mailto:stefano.stabellini@amd.com
mailto:sunilvl@ventanamicro.com
mailto:research_trasio@irq.a4lg.com
mailto:yiting.wang@windriver.com

Version 3.0-rcl | Page 4

Change Log

Version 3.0-rcl

Added SBI PMU event info function and new raw event type

Added SBI MPXY extension

® Added error code SBI_ERR_TIMEOUT

® Added error code SBI_ERR 10

® Added sse mask/unmask function and pointer masking bit in fwft

® (Clarify SBI IPI and RFENCE error codes

® Clarify the description of the set_timer function
® Added SBI DBTR extension

® Added SBI FWFT extension

® Added SBI SSE extension

® Added error code SBI_ERR_BAD RANGE

® Added error code SBI_ERR_INVALID STATE

Version 2.0

® (Clarification around SBI PMU set memory function
® Base extension function name typo fix

® Upate the document state to Ratified

Version 2.0-rc8

® Clarfications STA extension and counter index in the pmu snapshot.

Version 2.0-rc7

® Few clarfications around system suspend and pmu snapshot.

Version 2.0-rc6

® Few clarifications around rfence extensions

® Marks public review period complete.

Version 2.0-rc5

® Update the document state to Frozen

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Version 2.0-rc4 | Page 5

Version 2.0-rc4

Added flags parameter to sbi_pmu_snapshot_set_shmem)()

Return error code SBI_ERR_NO_SHMEM in SBI PMU extension wherever applicable

Made flags parameter of sbi_steal _time_set_shmem() as unsigned long

Split the specification into multiple adoc files

Add more clarification for firmware/vendor/experimental extension space.

Fix ambiguous usage of normative statements.

Version 2.0-rc3

® CI support added
® Fix revmark in the makefile.

® Few minor cleanups.

Version 2.0-rc2

® Added clarification for SUSP, NACL & STA extensions.
® Standardization of hart usage.

® Added an error code in SBI DBCN extension.

Version 2.0-rcl

® Added common description for shared memory physical address range parameter
® Added SBI debug console extension

® Relaxed the counter width requirement on SBI PMU firmware counters

® Added sbi_pmu_counter_fw_read _hi() in SBI PMU extension

® Reserved space for SBI implementation specific firmware events

® Added SBI system suspend extension

® Added SBI CPPC extension

® Clarified that an SBI extension can be partially implemented only if it defines a mechanism to
discover implemented SBI functions

® Added error code SBI_ERR_NO_ SHMEM

® Added SBI nested acceleration extension

® Added common description for a virtual hart
® Added SBI steal-time accounting extension

® Added SBI PMU snapshot extension

Version 1.0.0

® Updated the version for ratification

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Version 1.0-rc3 | Page 6
Version 1.0-rc3

® Updated the calling convention
® Fixed a typo in PMU extension

® Added a abbreviation table

Version 1.0-rc2

® Update to RISC-V formatting
® Improved the introduction

® Removed all references to RV32

Version 1.0-rcl

® A typo fix

Version 0.3.0

® Few typo fixes

® Updated the LICENSE with detailed text instead of a hyperlink

Version 0.3-rcl

Improved document styling and naming conventions

Added SBI system reset extension

Improved SBI introduction section

Improved documentation of SBI hart state management extension

Added suspend function to SBI hart state management extension

Added performance monitoring unit extension

Clarified that an SBI extension shall not be partially implemented

Version 0.2

® The entire vO.1 SBI has been moved to the legacy extension, which is now an optional extension.
This is technically a backwards-incompatible change because the legacy extension is optional and
vO0.1 of the SBI doesn’t allow probing, but it’s as good as we can do.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 1. Introduction | Page 7
Chapter 1. Introduction

This specification describes the RISC-V Supervisor Binary Interface, known from here on as SBI. The
SBI allows supervisor-mode (S-mode or VS-mode) software to be portable across all RISC-V
implementations by defining an abstraction for platform (or hypervisor) specific functionality. The
design of the SBI follows the general RISC-V philosophy of having a small core along with a set of
optional modular extensions.

An SBI extension defines a set of SBI functions which provides a particular functionality to
supervisor-mode software. SBI extensions as a whole are optional and cannot be partially
implemented unless an SBI extension defines a mechanism to discover implemented SBI functions. If
sbi_probe_extension() signals that an extension is available, all functions present in the SBI version
reported by sbi_get_spec_version() must conform to that version of the SBI specification.

The higher privilege software providing SBI interface to the supervisor-mode software is referred as an
SBI implementation or Supervisor Execution Environment (SEE). An SBI implementation (or SEE)
can be platform runtime firmware executing in machine-mode (M-mode) (see below Figure 1) or it can
be some hypervisor executing in hypervisor-mode (HS-mode) (see below Figure 2).

UHmode UHmode

i System Calls

b

S-mode S-mode

MHMode MHMNode

Figure 1. RISC-V System without H-extension

Virtualized World Host / Hypervisor World
VU-mode _ | Host Applications U-mode
¢ System Calls
VVS-mode _ System Calls
¢SBI
iSBI

Figure 2. RISC-V System with H-extension

Harts are provisioned by the SBI implementation for supervisor-mode software. Hence, from the

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 1. Introduction | Page 8

perspective of the SBI implementation, the S-mode hart contexts are referred to as virtual harts. In the
case that the implementation is a hypervisor, virtual harts represent the VS-mode guest contexts.

The SBI specification doesn’t specify any method for hardware discovery. The supervisor software
must rely on the other industry standard hardware discovery methods (i.e. Device Tree or ACPI) for

that.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 2. Terms and Abbreviations | Page 9

Chapter 2. Terms and Abbreviations

This specification uses the following terms and abbreviations:

Term
ACPI
ASID
BMC
CPPC
EID
FID
HSM
IPI
PMU
SBI
SEE
VMID

Meaning

Advanced Configuration and Power Interface
Address Space Identifier

Baseboard Management Controller
Collaborative Processor Performance Control
Extension ID

Function ID

Hart State Management

Inter Processor Interrupt

Performance Monitoring Unit

Supervisor Binary Interface

Supervisor Execution Environment

Virtual Machine Identifier

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 3. Binary Encoding | Page 10

Chapter 3. Binary Encoding

All SBI functions share a single binary encoding, which facilitates the mixing of SBI extensions. The

SBI specification follows the below calling convention.

An ECALL is used as the control transfer instruction between the supervisor and the SEE.

a7 encodes the SBI extension ID (EID),

a6 encodes the SBI function ID (FID) for a given extension ID encoded in a7 for any SBI extension

defined in or after SBI vO.2.

All registers except a0 & al must be preserved across an SBI call by the callee.

SBI functions must return a pair of values in @@ and al, with a0 returning an error code. This is

analogous to returning the C structure

struct sbiret {
long error;
long value;

b

In the name of compatibility, SBI extension IDs (EIDs) and SBI function IDs (FIDs) are encoded as
signed 32-bit integers. When passed in registers these follow the standard above calling convention
rules.

The Table 1 below provides a list of Standard SBI error codes.

Error Type

SBI_SUCCESS
SBI_ERR_FAILED
SBI_ERR_NOT_SUPPORTED
SBI_ERR_INVALID PARAM
SBI_ERR_DENIED
SBI_ERR_INVALID_ADDRESS
SBI_ERR_ALREADY_AVAILABLE
SBI_ERR_ALREADY_STARTED
SBI_ERR_ALREADY_STOPPED
SBI_ERR_NO_SHMEM
SBI_ERR_INVALID STATE
SBI_ERR_BAD_RANGE
SBI_ERR_TIMEOUT
SBI_ERR_IO

Value

Table 1. Standard SBI Errors

Description
Completed successfully
Failed

Not supported

Invalid parameter(s)
Denied or not allowed
Invalid address(s)
Already available
Already started
Already stopped
Shared memory not available
Invalid state

Bad (or invalid) range
Failed due to timeout

Input/Output error

An ECALL with an unsupported SBI extension ID (EID) or an unsupported SBI function ID (FID) must

return the error code SBI_ERR_NOT_SUPPORTED.

Every SBI function should prefer unsigned long as the data type. It keeps the specification simple

RISC-V Supervisor Binary Interface Specification | © RISC-V International

3.1. Hart list parameter | Page 11

and easily adaptable for all RISC-V ISA types. In case the data is defined as 32bit wide, higher privilege
software must ensure that it only uses 32 bit data.

3.1. Hart list parameter

If an SBI function caller needs to pass a list of harts to the higher privilege mode, it must use a hart
mask as defined below. This is applicable to any extensions defined in or after v0.2.

Any SBI function, requiring a hart mask, must take the following two arguments:

® unsigned long hart_mask is a scalar bit-vector containing hartids

® unsigned long hart_mask_base is the starting hartid from which the bit-vector must be
computed.

In a single SBI function call, the maximum number of harts that can be set is always XLEN. If a lower
privilege mode needs to pass information about more than XLEN harts, it must invoke the SBI

function multiple times. hart_mask_base can be set to -1 to indicate that hart_mask shall be
ignored and all available harts must be considered.

Any SBI function taking hart mask arguments may return the error values listed in the Table 2 below
which are in addition to function specific error values.

Table 2. Hart Mask Errors
Error code Description

SBI_ERR_INVALID PARAM Either hart_mask_base, or at least one hartid from hart_mask, is not
valid, i.e. either the hartid is not enabled by the platform or is not available to
the supervisor.

3.2. Shared memory physical address range parameter

If an SBI function needs to pass a shared memory physical address range to the SBI implementation
(or higher privilege mode), then this physical memory address range MUST satisfy the following
requirements:

® The SBI implementation MUST check that the specified physical memory range is composed of
accessible physical addresses and return SBI_ERR_INVALID ADDRESS when any address in the
range is not accessible.

An accessible address is one that S-mode could reasonably expect to access per its
description of the platform’s physical memory layout. As an SBI implementation may
further restrict the allowed range, it may return a generic SBI_ERR_FAILED (instead of
SBI_ERR_INVALID_ADDRESS) when input is inaccessible with respect to its specific

o limits. Returning SBI_ERR_ FAILED instead of SBI_ERR_INVALID_ADDRESS, in this
case, is not a violation of the above specification because the SBI implementation should
detect the distinct case of violating the more strict range first, making it appropriate to
return the error associated with the stricter range case immediately.

® The SBI implementation MUST check that the supervisor-mode software is allowed to access the
specified physical memory range with the access type requested (read and/or write).

® The SBI implementation MUST access the specified physical memory range using the PMA

RISC-V Supervisor Binary Interface Specification | © RISC-V International

3.2. Shared memory physical address range parameter | Page 12

attributes.

If the supervisor-mode software accesses the same physical memory range using a

memory type different than the PMA, then a loss of coherence or unexpected memory
o ordering may occur. The invoking software should follow the rules and sequences defined

in the RISC-V Svpbmt specification to prevent the loss of coherence and memory ordering.

® The data in the shared memory MUST follow little-endian byte ordering.

It is recommended that a memory physical address passed to an SBI function should use at least two

unsigned 7long parameters to support platforms which have memory physical addresses wider
than XLEN bits.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

4.1. Function: Get SBI specification version (FID #0) | Page 13
Chapter 4. Base Extension (EID #0x10)

The base extension is designed to be as small as possible. As such, it only contains functionality for
probing which SBI extensions are available and for querying the version of the SBI. All functions in
the base extension must be supported by all SBI implementations, so there are no error returns

defined.

4.1. Function: Get SBI specification version (FID #0)

struct sbiret sbi_get_spec_version(void);

Returns the current SBI specification version. This function must always succeed. The minor number
of the SBI specification is encoded in the low 24 bits, with the major number encoded in the next 7
bits. Bit 31 must be O and is reserved for future expansion.

4.2. Function: Get SBI implementation ID (FID #1)

struct sbiret sbi_get_impl_id(void);

Returns the current SBI implementation ID, which is different for every SBI implementation. It is
intended that this implementation ID allows software to probe for SBI implementation quirks.

4.3. Function: Get SBI implementation version (FID #2)

struct shiret sbi_get_impl_version(void);

Returns the current SBI implementation version. The encoding of this version number is specific to
the SBI implementation.

4.4, Function: Probe SBI extension (FID #3)

struct sbiret sbi_probe_extension(long extension_id);

Returns O if the given SBI extension ID (EID) is not available, or 1 if it is available unless defined as
any other non-zero value by the implementation.

4.5. Function: Get machine vendor ID (FID #4)

struct shiret sbi_get_mvendorid(void);

RISC-V Supervisor Binary Interface Specification | © RISC-V International

4.6. Function: Get machine architecture ID (FID #5) | Page 14

Return a value that is legal for the mvendorid CSR and O is always a legal value for this CSR.

4.6. Function: Get machine architecture ID (FID #5)

struct sbiret sbi_get_marchid(void);

Return a value that is legal for the marchid CSR and O is always a legal value for this CSR.

4.7. Function: Get machine implementation ID (FID #6)

struct sbiret sbi_get_mimpid(void);

Return a value that is legal for the mimpid CSR and O is always a legal value for this CSR.

4.8. Function Listing

Table 3. Base Function List

Function Name SBI Version FID EID

sbi_get_spec_version 0.2 0 0x10
sbi_get_impl_id 0.2 1 0x10
sbi_get_impl_version 0.2 2 0x10
sbi_probe _extension 0.2 3 0x10
sbi_get_mvendorid 0.2 4 0x10
sbi_get_marchid 0.2 5 0x10
sbi_get_mimpid 0.2 6 0x10

4.9. SBI Implementation IDs

Table 4. SBI Implementation IDs

Implementation ID Name

0 Berkeley Boot Loader (BBL)
1 OpenSBI

2 Xvisor

3 KVM

4 RustSBI

5 Diosix

6 Coffer

7 Xen Project

8 PolarFire Hart Software Services
9 coreboot

10 oreboot

RISC-V Supervisor Binary Interface Specification | © RISC-V International

4.9. SBI Implementation IDs | Page 15

Implementation ID Name

1 bhyve

RISC-V Supervisor Binary Interface Specification | © RISC-V International

5.1. Extension: Set Timer (EID #0x00) | Page 16
Chapter 5. Legacy Extensions (EIDs #0x00 - #0xOF)

The legacy SBI extensions follow a slightly different calling convention as compared to the SBI vO.2
(or higher) specification where:

® The SBI function ID field in abé register is ignored because these are encoded as multiple SBI
extension IDs.

® Nothing is returned in al register.
® All registers except @@ must be preserved across an SBI call by the callee.

® The value returned in a0 register is SBI legacy extension specific.

The page and access faults taken by the SBI implementation while accessing memory on behalf of the

supervisor are redirected back to the supervisor with sepc CSR pointing to the faulting ECALL
instruction.

The legacy SBI extensions is deprecated in favor of the other extensions listed below.

5.1. Extension: Set Timer (EID #0x00)

long sbi_set_timer(uinté4_t stime_value)

Programs the clock for next event after stime_value time. This function also clears the pending timer
interrupt bit.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e., (uint64_t)-1), or it can instead mask

the timer interrupt by clearing sie.STIE CSR bit.

This SBI call returns O upon success or an implementation specific negative error code.

5.2. Extension: Console Putchar (EID #0x01)

long sbi_console_putchar(int ch)

Write data present in ch to debug console.

Unlike shi_console_getchar(), this SBI call will block if there remain any pending characters
to be transmitted or if the receiving terminal is not yet ready to receive the byte. However, if the
console doesn’t exist at all, then the character is thrown away.

This SBI call returns O upon success or an implementation specific negative error code.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

5.3. Extension: Console Getchar (EID #0x02) | Page 17

5.3. Extension: Console Getchar (EID #0x02)

long sbi_console_getchar(void)

Read a byte from debug console.

The SBI call returns the byte on success, or -1 for failure.
5.4, Extension: Clear IPI (EID #0x03)

long sbi_clear_ipi(void)

Clears the pending IPIs if any. The IPI is cleared only in the hart for which this SBI call is invoked.
sbi_clear_ipi() is deprecated because S-mode code can clear sip.SSIP CSR bit directly.

This SBI call returns O if no IPI had been pending, or an implementation specific positive value if an
IPI had been pending.

5.5. Extension: Send IPI (EID #0x04)

long sbi_send_ipi(const unsigned long *hart_mask)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as Supervisor Software Interrupts.

hart_mask is a virtual address that points to a bit-vector of harts. The bit vector is represented as a
sequence of unsigned longs whose length equals the number of harts in the system divided by the

number of bits in an unsigned long, rounded up to the next integer.

This SBI call returns O upon success or an implementation specific negative error code.
5.6. Extension: Remote FENCE.I (EID #0x05)

long sbi_remote_fence_i(const unsigned long *hart_mask)
Instructs remote harts to execute FENCE.I instruction. The hart_mask is same as described in

shi_send_ipi().

This SBI call returns O upon success or an implementation specific negative error code.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

5.7. Extension: Remote SFENCE.VMA (EID #0x06) | Page 18

5.7. Extension: Remote SFENCE.VMA (EID #0x06)

long sbi_remote_sfence_vma(const unsigned long *hart_mask,
unsigned long start,
unsigned long size)

Instructs the remote harts to execute one or more SFENCE . VMA instructions, covering the range of
virtual addresses between start and start + size.

The remote fence operation applies to the entire address space if either:

® startand size are both O, or

® sizeisequal to 2"XLEN-1L

This SBI call returns O upon success or an implementation specific negative error code.

5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)

long sbi_remote_sfence_vma_asid(const unsigned long *hart_mask,
unsigned long start,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start and start + size. This covers only the given ASID.

The remote fence operation applies to the entire address space if either:

® startand size are both O, or

® sizeisequal to 2"XLEN-1.

This SBI call returns O upon success or an implementation specific negative error code.

5.9. Extension: System Shutdown (EID #0x08)

void sbi_shutdown(void)

Puts all the harts to shutdown state from supervisor point of view.

This SBI call doesn’t return irrespective whether it succeeds or fails.

5.10. Function Listing

Table 5. Legacy Function List

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Function Name

sbi_set timer
sbi_console_putchar
sbi_console_getchar
sbi_clear_ipi

sbi_send _ipi

sbi_remote fence i
sbi_remote sfence vma
sbi_remote sfence vma_asid
sbi_shutdown

RESERVED

SBI Version FID EID

01 0 0x00
0.1 0 0x01
0.1 0 0x02
0.1 0 0x03
0.1 0 0x04
0.1 0 0x05
0.1 0 0x06
0.1 0 0x07
0.1 0 0x08

0x09-0x0OF

5.10. Function Listing | Page 19

Replacement EID
0x54494D45
0x4442434E
0x4442434E

N/A

0x735049
0x52464E43
0x52464E43
0x52464E43
0x53525354

RISC-V Supervisor Binary Interface Specification | © RISC-V International

6.1. Function: Set Timer (FID #0) | Page 20

Chapter 6. Timer Extension (EID #0x54494D45 "TIME")

This replaces legacy timer extension (EID #0x00). It follows the new calling convention defined in
v0.2.

6.1. Function: Set Timer (FID #0)

struct shiret shi_set_timer(uinté4_t stime_value)

Programs the clock for next event after stime _value time. stime_value is in absolute time.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it may
request a timer interrupt infinitely far into the future (i.e., (uint64_t)-1). Alternatively, to not receive

timer interrupts, it may mask timer interrupts by clearing the sie.STIE CSR bit.

This function must clear the pending timer interrupt bit when stime_value is set to some time in the
future, regardless of whether timer interrupts are masked or not.

This function always returns SBI_SUCCESS in sbiret.error.

6.2. Function Listing

Table 6. TIME Function List

Function Name SBI Version FID EID
sbi_set timer 0.2 0 0x54494D45

RISC-V Supervisor Binary Interface Specification | © RISC-V International

7.1. Function: Send IPI (FID #0) | Page 21
Chapter 7. IPI Extension (EID #0x735049 "sPIl: s-mode IPI")

This extension replaces the legacy extension (EID #0x04). The other IPI related legacy extension(0x3)

is deprecated now. All the functions in this extension follow the hart_mask as defined in the binary
encoding section.

7.1. Function: Send IPI (FID #0)

struct sbiret sbi_send_ipi(unsigned long hart_mask,
unsigned long hart_mask_base)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as the supervisor software interrupts.

The possible error codes returned in sbiret.error are shown in the Table 7 below.

Table 7. IPI Send Errors

Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.
SBI_ERR_INVALID_PARAM Either hart_mask_base or at least one hartid from hart_mask is

not valid, i.e,, either the hartid is not enabled by the platform or is not
available to the supervisor.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

7.2. Function Listing

Table 8. IPI Function List
Function Name SBI Version FID EID

sbi_send_ipi 0.2 0 0x735049

RISC-V Supervisor Binary Interface Specification | © RISC-V International

8.1. Function: Remote FENCE.I (FID #0) | Page 22
Chapter 8. RFENCE Extension (EID #0x52464E43 "RFNC")

This extension defines all remote fence related functions and replaces the legacy extensions (EIDs
#0x05 - #0x07). All the functions follow the hart_mask as defined in binary encoding section. Any

function which accepts a range of addresses (i.e. start_addr and size) must abide by the below
constraints on range parameters.

The remote fence operation applies to the entire address space if either:

® start_addr and size are both O, or

® sizeisequal to 2"XLEN-1.

8.1. Function: Remote FENCE.I| (FID #0)

struct shiret sbi_remote_fence_i(unsigned long hart_mask,
unsigned long hart_mask_base)

Instructs remote harts to execute FENCE . I instruction.

The possible error codes returned in shiret.error are shown in the Table 9 below.

Table 9. RFENCE Remote FENCE.I Errors

Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.
SBI_ERR_INVALID PARAM Either hart_mask_base or at least one hartid from hart_mask is

not valid, i.e,, either the hartid is not enabled by the platform or is not
available to the supervisor.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

8.2. Function: Remote SFENCE.VMA (FID #1)

struct sbiret sbi_remote_sfence_vma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instructs the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start_addr and start_addr + size.

The possible error codes returned in sbiret.error are shown in the Table 10 below.

Table 10. RFENCE Remote SFENCE.VMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Error code

SBI_ERR_INVALID ADDRESS

SBI_ERR_INVALID PARAM

SBI_ERR_FAILED

8.3. Function: Remote SFENCE.VMA with ASID (FID #2) | Page 23

Description
start_addr or size is not valid.

Either hart_mask_base or at least one hartid from hart_mask is
not valid, i.e,, either the hartid is not enabled by the platform or is not
available to the supervisor.

The request failed for unspecified or unknown other reasons.

8.3. Function: Remote SFENCE.VMA with ASID (FID #2)

struct sbiret sbi_remote_sfence_vma_asid(unsigned long hart_mask,

unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,

unsigned long asid)

Instruct the remote harts to execute one or more SFENCE.VMA instructions, covering the range of
virtual addresses between start_addr and start_addr + size. This covers only the given

ASID.

The possible error codes returned in shiret.error are shown in the Table 11 below.

Table 11. RFENCE Remote SFENCE.VMA with ASID Errors

Error code
SBI_SUCCESS
SBI_ERR INVALID ADDRESS

SBI_ERR_INVALID PARAM

SBI_ERR_FAILED

Description

IPI was sent to all the targeted harts successfully.
start_addr or size is not valid.

Either asid, hart_mask_base, or at least one hartid from

hart_mask is not valid, i.e, either the hartid is not enabled by the
platform or is not available to the supervisor.

The request failed for unspecified or unknown other reasons.

8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)

struct sbiret sbi_remote_hfence_gvma_vmid(unsigned long hart_mask,

unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,

unsigned long vmid)

Instruct the remote harts to execute one or more HFENCE . GVMA instructions, covering the range of

guest physical addresses between start_addr and start_addr + size only for the given VMID.
This function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret.error are shown in the Table 12 below.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

8.5. Function: Remote HFENCE.GVMA (FID #4) | Page 24

Table 12. RFENCE Remote HFENCE.GVMA with VMID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not implemented or one of the
target hart doesn’t support hypervisor extension.

SBI_ERR_INVALID ADDRESS start_addr or size is not valid.

SBI_ERR_INVALID_PARAM Either vmid, hart_mask_base, or at least one hartid from

hart_mask is not valid, i.e, either the hartid is not enabled by the
platform or is not available to the supervisor.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

8.5. Function: Remote HFENCE.GVMA (FID #4)

struct sbiret sbi_remote_hfence_gvma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instruct the remote harts to execute one or more HFENCE . GVMA instructions, covering the range of

guest physical addresses between start_addr and start_addr + size for all the guests. This
function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbhiret.error are shown in the Table 13 below.

Table 13. RFENCE Remote HFENCE.GVMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not implemented or one of the
target hart doesn’t support hypervisor extension.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

SBI_ERR_INVALID_PARAM Either hart_mask_base or at least one hartid from hart_mask is

not valid, i.e,, either the hartid is not enabled by the platform or is not
available to the supervisor.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)

struct sbiret sbi_remote_hfence_vvma_asid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more HFENCE . VVMA instructions, covering the range of

RISC-V Supervisor Binary Interface Specification | © RISC-V International

8.7. Function: Remote HFENCE.VVMA (FID #6) | Page 25

guest virtual addresses between start_addr and start_addr + size for the given ASID and

current VMID (in hgatp CSR) of calling hart. This function call is only valid for harts implementing
hypervisor extension.

The possible error codes returned in shiret.error are shown in the Table 14 below.

Table 14. RFENCE Remote HFENCE.VVMA with ASID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not implemented or one of the
target hart doesn’t support hypervisor extension.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

SBI_ERR_INVALID _PARAM Either asid, hart_mask_base, or at least one hartid from

hart_mask is not valid, i.e, either the hartid is not enabled by the
platform or is not available to the supervisor.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

8.7. Function: Remote HFENCE.VVMA (FID #6)

struct shiret sbi_remote_hfence_vvma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instruct the remote harts to execute one or more HFENCE . VVMA instructions, covering the range of
guest virtual addresses between start_addr and start_addr + size for current VMID (in

hgatp CSR) of calling hart. This function call is only valid for harts implementing hypervisor
extension.

The possible error codes returned in sbiret.error are shown in the Table 15 below.

Table 15. RFENCE Remote HFENCE.VVMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_SUPPORTED This function is not supported as it is not implemented or one of the
target hart doesn’t support hypervisor extension.

SBI_ERR_INVALID_ADDRESS start_addr or size is not valid.

SBI_ERR_INVALID PARAM Either hart_mask_base or at least one hartid from hart_mask is

not valid, i.e,, either the hartid is not enabled by the platform or is not
available to the supervisor.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

8.8. Function Listing

Table 16. RFENCE Function List

RISC-V Supervisor Binary Interface Specification | © RISC-V International

8.8. Function Listing | Page 26

Function Name

sbi_remote fence i

sbi_remote sfence vma
sbi_remote sfence vma_asid
sbi_remote_hfence_gvma_vmid
sbi_remote_hfence_gvma
sbi_remote hfence vvma asid

sbi_remote hfence vvma

RISC-V Supervisor Binary Interface Specification | © RISC-V International

SBI Version
0.2
0.2
0.2
0.2
0.2
0.2
0.2

FID

o U1 W

EID

0x52464E43
0x52464E43
0x52464E43
0x52464E43
0x52464E43
0x52464E43
0x52464E43

Chapter 9. Hart State Management Extension (EID #0x48534D "HSM") | Page 27
Chapter 9. Hart State Management Extension (EID #0x48534D "HSM")

The Hart State Management (HSM) Extension introduces a set of hart states and a set of functions
which allow the supervisor-mode software to request a hart state change.

The Table 17 shown below describes all possible HSM states along with a unique HSM state id for
each state:

Table 17. HSM Hart States

State ID State Name Description
0 STARTED The hart is physically powered-up and executing normally.
1 STOPPED The hart is not executing in supervisor-mode or any lower privilege

mode. It is probably powered-down by the SBI implementation if the
underlying platform has a mechanism to physically power-down harts.

2 START _PENDING Some other hart has requested to start (or power-up) the hart from the
STOPPED state and the SBI implementation is still working to get the
hart in the STARTED state.

3 STOP_PENDING The hart has requested to stop (or power-down) itself from the STARTED
state and the SBI implementation is still working to get the hart in the
STOPPED state.

4 SUSPENDED This hart is in a platform specific suspend (or low power) state.

5 SUSPEND_PENDING The hart has requested to put itself in a platform specific low power state

from the STARTED state and the SBI implementation is still working to
get the hart in the platform specific SUSPENDED state.

6 RESUME _PENDING An interrupt or platform specific hardware event has caused the hart to
resume normal execution from the SUSPENDED state and the SBI
implementation is still working to get the hart in the STARTED state.

At any point in time, a hart should be in one of the above mentioned hart states. The hart state
transitions by the SBI implementation should follow the state machine shown below in the Figure 3.

SBI implementation called by some

stopping hart other hart
STOP_PENDING START_PENDING
. A . .
sbi hart stop() SBIl implementation
~ called b starting hart
hart itself
‘—J
—> _—
sbi hart suspend()
SBI implementation called by
resuming hart hart itself
RESUME_PENDING SUSPEND_PENDING
Hart recieved SBIl implementation

an interrupt or

A et ot suspending hart

Figure 3. SBI HSM State Machine

RISC-V Supervisor Binary Interface Specification | © RISC-V International

9.1. Function: Hart start (FID #0) | Page 28

A platform can have multiple harts grouped into hierarchical topology groups (namely cores, clusters,
nodes, etc.) with separate platform specific low-power states for each hierarchical group. These
platform specific low-power states of hierarchical topology groups can be represented as platform
specific suspend states of a hart. An SBI implementation can utilize the suspend states of higher
topology groups using one of the following approaches:

1. Platform-coordinated: In this approach, when a hart becomes idle the supervisor-mode power-
managment software will request deepest suspend state for the hart and higher topology groups.
An SBI implementation should choose a suspend state at higher topology group which is:

a. Not deeper than the specified suspend state
b. Wake-up latency is not higher than the wake-up latency of the specified suspend state

2. OS-inititated: In this approach, the supervisor-mode power-managment software will directly
request a suspend state for higher topology group after the last hart in that group becomes idle.
When a hart becomes idle, the supervisor-mode power-managment software will always select
suspend state for the hart itself but it will select a suspend state for a higher topology group only if
the hart is the last running hart in the group. An SBI implementation should:

a. Never choose a suspend state for higher topology group different from the specified suspend
state

b. Always prefer most recent suspend state requested for higher topology group

9.1. Function: Hart start (FID #0)

struct sbiret sbi_hart_start(unsigned long hartid,
unsigned long start_addr,
unsigned long opaque)

Request the SBI implementation to start executing the target hart in supervisor-mode, at the address
specified by start_addr, with the specific register values described in Table 18.

Table 18. HSM Hart Start Register State

Register Name Register Value
satp 0

sstatus.SIE 0

a0 hartid

al opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient as start_addr, because the hart

o will start execution in supervisor-mode with the MMU off, hence start_addr must be
less than XLEN bits wide.

This call is asynchronous — more specifically, the sbi_hart_start() may return before the target
hart starts executing as long as the SBI implementation is capable of ensuring the return code is
accurate. If the SBI implementation is a platform runtime firmware executing in machine-mode (M-
mode), then it MUST configure any physical memory protection it supports, such as that defined by
PMP, and other M-mode state, before transferring control to supervisor-mode software.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

9.2. Function: Hart stop (FID #1) | Page 29
The hartid parameter specifies the target hart which is to be started.

The start_addr parameter points to a runtime-specified physical address, where the hart can start
executing in supervisor-mode.

The opaque parameter is an XLEN-bit value which will be set in the al register when the hart starts
executing at start_addr.

The possible error codes returned in sbiret.error are shown in the Table 19 below.

Table 19. HSM Hart Start Errors

Error code Description
SBI_SUCCESS Hart was previously in stopped state. It will start executing from start_addr.
SBI_ERR_INVALID_ADDRESS start_addr is not valid, possibly due to the following reasons:

* It is not a valid physical address.
* Executable access to the address is prohibited by a physical memory protection
mechanism or H-extension G-stage for supervisor-mode.

SBI_ERR_INVALID PARAM hartid is not a valid hartid as the corresponding hart cannot be started in
supervisor mode.

SBI_ERR_ALREADY_AVAILABLE The given hartid is already started.

SBI_ERR_FAILED The start request failed for unspecified or unknown other reasons.

9.2. Function: Hart stop (FID #1)

struct sbiret sbi_hart_stop(void)

Request the SBI implementation to stop executing the calling hart in supervisor-mode and return its
ownership to the SBI implementation. This call is not expected to return under normal conditions.

The sbi_hart_stop() must be called with supervisor-mode interrupts disabled.

The possible error codes returned in sbiret.error are shown in the Table 20 below.

Table 20. HSM Hart Stop Errors

Error code Description

SBI_ERR_FAILED Failed to stop execution of the current hart

9.3. Function: Hart get status (FID #2)

struct sbiret sbi_hart_get_status(unsigned long hartid)
Get the current status (or HSM state id) of the given hart in sbiret.value, or an error through

sbhiret.error.

The hartid parameter specifies the target hart for which status is required.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

9.4. Function: Hart suspend (FID #3) | Page 30
The possible status (or HSM state id) values returned in shiret.value are described in Table 17.

The possible error codes returned in sbiret.error are shown in the Table 21 below.

Table 21. HSM Hart Get Status Errors

Error code Description

SBI_ERR_INVALID_ _PARAM The given hartid is not valid.

The harts may transition HSM states at any time due to any concurrent shi_hart_start() or

sbi_hart_stop() or shi_hart_suspend() calls, the return value from this function may not
represent the actual state of the hart at the time of return value verification.

9.4. Function: Hart suspend (FID #3)

struct sbiret sbi_hart_suspend(uint32_t suspend_type,
unsigned long resume_addr,
unsigned long opaque)

Request the SBI implementation to put the calling hart in a platform specific suspend (or low power)

state specified by the suspend_type parameter. The hart will automatically come out of suspended
state and resume normal execution when it receives an interrupt or platform specific hardware event.

The platform specific suspend states for a hart can be either retentive or non-retentive in nature. A
retentive suspend state will preserve hart register and CSR values for all privilege modes whereas a
non-retentive suspend state will not preserve hart register and CSR values.

Resuming from a retentive suspend state is straight forward and the supervisor-mode software will see

SBI suspend call return without any failures. The resume_addr parameter is unused during
retentive suspend.

Resuming from a non-retentive suspend state is relatively more involved and requires software to
restore various hart registers and CSRs for all privilege modes. Upon resuming from non-retentive

suspend state, the hart will jump to supervisor-mode at address specified by resume_addr with
specific registers values described in the Table 22 below.

Table 22. HSM Hart Resume Register State

Register Name Register Value
satp 0

sstatus.SIE 0

10) hartid

al opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient for resume_addr, because the hart

0 will resume execution in supervisor-mode with the MMU off, hence resume_addr must
be less than XLEN bits wide.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

9.5. Function Listing | Page 31

The suspend_type parameter is 32 bits wide and the possible values are shown in Table 23 below.

Value

0x00000000
0x00000001 - OxOFFFFFFF
0x10000000 - Ox7FFFFFFF
0x80000000

0x80000001 - Ox8FFFFFFF
0x90000000 - OxFFFFFFFF

Table 23. HSM Hart Suspend Types

Description

Default retentive suspend
Reserved for future use

Platform specific retentive suspend
Default non-retentive suspend
Reserved for future use

Platform specific non-retentive suspend

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a non-retentive suspend.

The opaque parameter is an XLEN-bit value which will be set in the al register when the hart
resumes execution at resume_addr after a non-retentive suspend.

The possible error codes returned in sbiret.error are shown in the Table 24 below.

Error code
SBI_SUCCESS
SBI_ERR_INVALID PARAM

SBI_ERR_NOT_SUPPORTED

SBI_ERR_INVALID _ADDRESS

SBI_ERR_FAILED

9.5. Function Listing

Function Name
sbi_hart_start
sbi_hart_stop
sbi_hart_get_status

sbi_hart_suspend

Table 24. HSM Hart Suspend Errors

Description

Hart has suspended and resumed successfully from a retentive suspend state.
suspend_type is reserved or is platform-specific and unimplemented.

suspend_type is not reserved and is implemented, but the platform does not
support it due to one or more missing dependencies.

resume_addr is not valid, possibly due to the following reasons:

* It is not a valid physical address.

* Executable access to the address is prohibited by a physical memory protection
mechanism or H-extension G-stage for supervisor-mode.

The suspend request failed for unspecified or unknown other reasons.

Table 25. HSM Function List

SBI Version FID EID

0.2 0 0x48534D
0.2 1 0x48534D
0.2 2 0x48534D
0.3 3 0x48534D

RISC-V Supervisor Binary Interface Specification | © RISC-V International

10.1. Function: System reset (FID #0) | Page 32
Chapter 10. System Reset Extension (EID #0x53525354 "SRST")

The System Reset Extension provides a function that allow the supervisor software to request system-
level reboot or shutdown. The term "system" refers to the world-view of supervisor software and the
underlying SBI implementation could be provided by machine mode firmware or a hypervisor.

10.1. Function: System reset (FID #0)

struct sbiret sbi_system_reset(uint32_t reset_type, uint32_t
reset_reason)

Reset the system based on provided reset_type and reset_reason. This is a synchronous call
and does not return if it succeeds.

The reset_type parameter is 32 bits wide and it’s possible values are shown in the Table 26 below.

Table 26. SRST System Reset Types

Value Description
0x00000000 Shutdown
0x00000001 Cold reboot
0x00000002 Warm reboot

0x00000003 - OXEFFFFFFF
0xFOOOOO0O0O - OxFFFFFFFF

Value

0x00000000
0x00000001

0x00000002 - OxDFFFFFFF
OxEO0O0000O0 - OxEFFFFFFF
OxFOOOO0O0O0O0 - OXxFFFFFFFF

Reserved for future use

Vendor or platform specific reset type

The reset_reason is an optional parameter representing the reason for system reset. This
parameter is 32 bits wide with possible values shown in the Table 27 below

Table 27. SRST System Reset Reasons

Description

No reason

System failure

Reserved for future use

SBI implementation specific reset reason

Vendor or platform specific reset reason

When supervisor software is running natively, the SBI implementation is provided by machine mode
firmware. In this case, shutdown is equivalent to a physical power down of the entire system and cold
reboot is equivalent to a physical power cycle of the entire system. Further, warm reboot is equivalent
to a power cycle of the main processor and parts of the system, but not the entire system. For example,
on a server class system with a BMC (board management controller), a warm reboot will not power
cycle the BMC whereas a cold reboot will definitely power cycle the BMC.

When supervisor software is running inside a virtual machine, the SBI implementation is provided by
a hypervisor. Shutdown, cold reboot and warm reboot will behave functionally the same as the native
case, but might not result in any physical power changes.

The possible error codes returned in sbiret.error are shown in the Table 28 below.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

10.2. Function Listing | Page 33

Table 28. SRST System Reset Errors
Error code Description

SBI_ERR_INVALID PARAM Atleast one of reset_type or reset_reason is reserved or is platform-specific
and unimplemented.

SBI_ERR_NOT_SUPPORTED reset_type is not reserved and is implemented, but the platform does not support
it due to one or more missing dependencies.

SBI_ERR_FAILED The reset request failed for unspecified or unknown other reasons.

10.2. Function Listing

Table 29. SRST Function List

Function Name SBI Version FID EID
sbi_system_reset 0.3 0 0x53525354

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU") | Page 34
Chapter 11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")

The RISC-V hardware performance counters such as mcycle, minstret, and mhpmcounterX CSRs

are accessible as read-only from supervisor-mode using cycle, instret, and hpmcounterX CSRs.
The SBI performance monitoring unit (PMU) extension is an interface for supervisor-mode to
configure and use the RISC-V hardware performance counters with assistance from the machine-
mode (or hypervisor-mode). These hardware performance counters can only be started, stopped, or

configured from machine-mode using mcountinhibit and mhpmeventX CSRs. Due to this, a

machine-mode SBI implementation may choose to disallow SBI PMU extension if mcountinhibit
CSR is not implemented by the RISC-V platform.

A RISC-V platform generally supports monitoring of various hardware events using a limited number
of hardware performance counters which are up to 64 bits wide. In addition, a SBI implementation
can also provide firmware performance counters which can monitor firmware events such as number
of misaligned load/store instructions, number of RFENCEs, number of IPIs, etc. All firmware counters
must have same number of bits and can be up to 64 bits wide.

The SBI PMU extension provides:

L An interface for supervisor-mode software to discover and configure per-hart hardware/firmware
counters

2. Atypical perf compatible interface for hardware/firmware performance counters and events

3. Full access to microarchitecture’s raw event encodings

To define SBI PMU extension calls, we first define important entities counter_1idx, event_1idx,
and event_data. The counter_idx is a logical number assigned to each hardware/firmware

counter. The event_idx represents a hardware (or firmware) event whereas the event_data is 64
bits wide and represents additional configuration (or parameters) for a hardware (or firmware) event.

The event_idx is a 20 bits wide number encoded as follows:

event_idx[19:16] = type
event_idx[15:0] = code

The below table describes the different types of events supported in this specification.

Table 30. PMU Event Type

Event ID Type Value Description

Type #0 0 Hardware general events

Type #1 1 Hardware Cache events

Type #2 2 Hardware raw events (deprecated) Bits
allowed for mhpmeventX [0:48]

Type #3 3 Hardware raw events v2 Bits allowed for
mhpmeventX [0:58]

Type #15 15 Firmware events

RISC-V Supervisor Binary Interface Specification | © RISC-V International

https://en.wikipedia.org/wiki/Perf_(Linux)

11.1. Event: Hardware general events (Type #0) | Page 35

11.1. Event: Hardware general events (Type #0)

The event_idx.type (ie. event type) should be Ox0 for all hardware general events and each

hardware general event is identified by an unique event_idx.code (i.e. event code) described in
the Table 31 below.

Table 31. PMU Hardware Events

General Event Name Code Description

SBI_PMU_HW_NO_EVENT 0 Unused event because event_idX cannot
be zero

SBI_PMU_HW _CPU_CYCLES 1 Event for each CPU cycle

SBI_PMU_HW _INSTRUCTIONS 2 Event for each completed instruction
SBI_PMU_HW _ CACHE REFERENCES 3 Event for cache hit
SBI_PMU_HW_CACHE MISSES 4 Event for cache miss
SBI_PMU_HW_BRANCH INSTRUCTIONS 5 Event for a branch instruction
SBI_PMU_HW _BRANCH_MISSES 6 Event for a branch misprediction
SBI_PMU_HW_BUS_ CYCLES 7 Event for each BUS cycle
SBI_PMU_HW_STALLED_CYCLES_FRONTEND 8 Event for a stalled cycle in

microarchitecture frontend

SBI_PMU_HW_STALLED CYCLES BACKEND 9 Event for a stalled cycle in
microarchitecture backend

SBI_PMU_HW _REF_CPU_CYCLES 10 Event for each reference CPU cycle

The event_data (ie. event data) is unused for hardware general events and all non-zero values of
event_data are reserved for future use.

A RISC-V platform might halt the CPU clock when it enters WAIT state using the WFI
e instruction or enters platform specific SUSPEND state using the SBI HSM hart suspend
call.

The SBI_PMU_HW_CPU_CYCLES event counts CPU clock cycles as counted by the

o cycle CSR. These may be variable frequency cycles, and are not counted when the CPU
clock is halted.

The SBI_PMU_HW _REF_CPU_CYCLES counts fixed-frequency clock cycles while the
0 CPU clock is not halted. The fixed-frequency of counting might, for example, be the same

frequency at which the time CSR counts.

The SBI_PMU_HW_BUS_CYCLES counts fixed-frequency clock cycles. The fixed-

o frequency of counting might be the same frequency at which the time CSR counts, or may
be the frequency of the clock at the boundary between the hart (and it’s private caches)
and the rest of the system.

11.2. Event: Hardware cache events (Type #1)

The event_idx.type (ie. event type) should be 0x1 for all hardware cache events and each

hardware cache event is identified by an unique event_idx.code (i.e. event code) which is
encoded as follows:

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.3. Event: Hardware raw events (Type #2) | Page 36

event_idx.code[15:3] = cache_id

event_idx.code[2:1]
event_idx.code[0:0]

op_id
result_id

Below tables show possible values of: event_idx.code.cache_id (i.e. cache event id),
event_idx.code.op_id (ie. cache operation id) and event_idx.code.result_id (ie. cache

result id).

Cache Event Name
SBI_PMU_HW_CACHE_LI1D
SBI_PMU HW CACHE LII
SBI_PMU_HW _CACHE LL
SBI_PMU_HW_CACHE_DTLB
SBI_PMU HW CACHE ITLB
SBI_PMU_HW _CACHE BPU
SBI_PMU_HW_ CACHE_NODE

Table 33. PMU Cache Operation ID

Cache Operation Name
SBI PMU HW CACHE OP READ
SBI_PMU_HW_CACHE_OP_WRITE

SBI_PMU_HW_CACHE_OP_PREFETCH

Table 32. PMU Cache Event ID

Event ID

D ok~ w N

Operation ID

0
1
2

Description

Levell data cache event

Levell instruction cache event
Last level cache event

Data TLB event

Instruction TLB event

Branch predictor unit event

NUMA node cache event

Description
Read cache line
Write cache line

Prefetch cache line

Table 34. PMU Cache Operation Result ID

Cache Result Name

Result ID

SBI_PMU_HW_CACHE_RESULT_ACCESS 0

SBI_PMU_HW _CACHE_ RESULT_MISS

1

Description
Cache access

Cache miss

The event_data (i.e. event data) is unused for hardware cache events and all non-zero values of

event_data are reserved for future use.

11.3. Event: Hardware raw events (Type #2)

The event_idx.type (ie. event type) should be 0x2 for all hardware raw events and
event_idx.code (ie. event code) should be zero.

On RISC-V platforms with 32 bits wide mhpmeventX CSRs, the event_data configuration (or
parameter) should have the 32-bit value to to be programmed in the mhpmeventX CSR.

On RISC-V platforms with 64 bits wide mhpmeventX CSRs, the event_data configuration (or

parameter) should have the 48-bit value to be programmed in the lower 48-bits of mhpmeventX CSR
and the SBI implementation shall determine the value to be programmed in the upper 16 bits of

mhpmeventX CSR.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

114. Event: Hardware raw events v2 (Type #3) | Page 37

o This event type is deprecated in favor of raw events v2.

11.4. Event: Hardware raw events v2 (Type #3)

The event_idx.type (ie. event type) should be Ox3 for all hardware raw events and
event_idx.code (ie. event code) should be zero.

On RISC-V platforms with 32 bits wide mhpmeventX CSRs, the event_data configuration (or
parameter) should have the 32-bit value to to be programmed in the mhpmeventX CSR.

On RISC-V platforms with 64 bits wide mhpmeventX CSRs, the event_data configuration (or

parameter) should have the 58-bit value be programmed in the lower 58-bits of mhpmeventX CSR
and the SBI implementation shall determine the value to be programmed in the upper 6 bits of

mhpmeventX CSR based on privilege specification definition.

The RISC-V platform hardware implementation may choose to define the expected value to

o be written to mhpmeventX CSR for a hardware event. In case of hardware general/cache
events, the RISC-V platform hardware implementation may use the zero-extended

event_idx as the expected value for simplicity.

11.5. Event: Firmware events (Type #15)

The event_idx.type (ie. event type) should be Oxf for all firmware events and each firmware
event is identified by an unique event_idx.code (ie. event code) described in the Table 35 below.

Table 35. PMU Firmware Events

Firmware Event Name Code Description

SBI_PMU_ FW_MISALIGNED LOAD 0 Misaligned load trap event

SBI_PMU_FW_MISALIGNED _STORE 1 Misaligned store trap event

SBI _PMU_ FW _ ACCESS LOAD 2 Load access trap event

SBI_PMU_FW_ACCESS_STORE 3 Store access trap event

SBI_PMU_FW_ILLEGAL_INSN 4 Illegal instruction trap event

SBI PMU_FW_SET_ TIMER 5 Set timer event

SBI_PMU_ FW _IPI SENT 6 Sent IPI to other hart event

SBI_PMU_FW_IPI_RECEIVED 7 Received IPI from other hart event

SBI _PMU_FW _FENCE I SENT 8 Sent FENCE.I request to other hart
event

SBI_PMU_FW_FENCE_I_RECEIVED 9 Received FENCE.I request from other
hart event

SBI_PMU_FW_SFENCE_VMA _ SENT 10 Sent SFENCE.VMA request to other
hart event

SBI _PMU_FW_ SFENCE VMA RECEIVED 11 Received SFENCE.VMA request from
other hart event

SBI_PMU_FW_SFENCE_VMA _ ASID_SENT 12 Sent SFENCE.VMA with ASID request
to other hart event

SBI_PMU_FW_SFENCE_VMA _ ASID_RECEIVED 13 Received SFENCE.VMA with ASID

request from other hart event

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.6. Function: Get number of counters (FID #0) | Page 38

Firmware Event Name Code Description

SBI_PMU_FW_HFENCE_GVMA_SENT 14 Sent HFENCE.GVMA request to other
hart event

SBI_PMU_FW_HFENCE_GVMA_RECEIVED 15 Received HFENCE.GVMA request from
other hart event

SBI_PMU _ FW_ HFENCE GVMA VMID SENT 16 Sent HEENCE.GVMA with VMID
request to other hart event

SBI_PMU_FW_HFENCE_GVMA_VMID_ RECEIVED 17 Received HFENCE.GVMA with VMID
request from other hart event

SBI_PMU_FW_HFENCE_VVMA_SENT 18 Sent HFENCE.VVMA request to other
hart event

SBI_PMU_FW_HFENCE_VVMA_RECEIVED 19 Received HFENCE.VVMA request from
other hart event

SBI PMU FW HFENCE VVMA ASID SENT 20 Sent HFENCE.VVMA with ASID request
to other hart event

SBI_PMU_FW_HFENCE_VVMA_ASID_RECEIVED 21 Received HFENCE.VVMA with ASID
request from other hart event

Reserved 22 - 255 Reserved for future use

Implementation specific events 256 - 65534 SBIimplementation specific firmware
events

SBI_PMU_ FW_PLATFORM 65535 RISC-V platform specific firmware

events, where the event_data
configuration (or parameter) contains
the event encoding.

For all firmware events except SBI_PMU_FW_PLATFORM, the event_data configuration (or
parameter) is unused and all non-zero values of event_data are reserved for future use.

11.6. Function: Get number of counters (FID #0)

struct sbiret sbi_pmu_num_counters()

Returns the number of counters (both hardware and firmware) in shiret.value and always
returns SBI_SUCCESS in sbiret.error.

11.7. Function: Get details of a counter (FID #1)

struct sbiret sbi_pmu_counter_get_info(unsigned long counter_idx)

Get details about the specified counter such as underlying CSR number, width of the counter, type of
counter hardware/firmware, etc.

The counter_info returned by this SBI call is encoded as follows:

counter_info[11:0] = CSR (12bit CSR number)
counter_info[17:12] = Width (One less than number of bits in CSR)

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.8. Function: Find and configure a matching counter (FID #2) | Page 39

counter_info[XLEN-2:18] = Reserved for future use
counter_info[XLEN-1] = Type (0 = hardware and 1 = firmware)

If counter_info.type == 1thencounter_info.csr and counter_info.width should be

ignored.

Returns the counter_info described above in shiret.value.

The possible error codes returned in sbiret.error are shown in the Table 36 below.

Table 36. PMU Counter Get Info Errors

Error code Description
SBI_SUCCESS counter_info read successfully.
SBI_ERR_INVALID _PARAM counter_idx points to an invalid counter.

11.8. Function: Find and configure a matching counter (FID #2)

struct shiret sbi_pmu_counter_config_matching(unsigned long

counter_idx_base,

counter_idx_mask,

config_flags,

unsigned long

unsigned long

unsigned long event_idx,
uinté4_t event_data)

Find and configure a counter from a set of counters which is not started (or enabled) and can monitor
the specified event. The counter_idx_base and counter_idx_mask parameters represent the
set of counters whereas event_idx represents the event to be monitored and event_data

represents any additional event configuration.

The config_flags parameter represents additional counter configuration and filter flags. The bit
definitions of the config_flags parameter are shown in the Table 37 below.

Table 37. PMU Counter Config Match Flags

Flag Name Bits
SBI_PMU_CFG_FLAG SKIP_ MATCH 0:0
SBI PMU CFG FLAG CLEAR VALUE 11
SBI_PMU_CFG_FLAG AUTO_START 2:2
SBI_PMU_CFG_FLAG SET VUINH 3:3
SBI PMU CFG FLAG SET VSINH 4:4

Description
Skip the counter matching

Clear (or zero) the counter value in
counter configuration

Start the counter after configuring a
matching counter

Event counting inhibited
in VU-mode

Event counting inhibited
in VS-mode

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.9. Function: Start a set of counters (FID #3) | Page 40

Flag Name Bits Description
SBI _PMU_ CFG_FLAG SET_ UINH 5:5 Event counting inhibited
in U-mode
SBI_PMU_CFG_FLAG_SET_SINH 6:6 Event counting inhibited
in S-mode
SBI_PMU _CFG_FLAG_SET_MINH 77 Event counting inhibited
in M-mode
RESERVED 8:(XLEN-1) All non-zero values are reserved for
future use

When SBI_PMU_CFG_FLAG_SKIP_MATCH is set in config_flags, the SBI
o implementation will unconditionally select the first counter from the set of counters

specified by the counter_idx_base and counter_idx_mask.

The SBI_PMU_CFG_FLAG_AUTO_START flag in config_flags has no impact
on the counter value.

The config_flags[3:7] bits are event filtering hints so these can be ignored or
0 overridden by the SBI implementation for security concerns or due to lack of event filtering
support in the underlying RISC-V platform.

Returns the counter_idx in shiret.value upon success.

In case of failure, the possible error codes returned in sbiret.error are shown in the Table 38
below.

Table 38. PMU Counter Config Match Errors

Error code Description

SBI_SUCCESS counter found and configured successfully.
SBI_ERR_INVALID PARAM set of counters has at least one invalid counter.
SBI_ERR_NOT_SUPPORTED none of the counters can monitor the specified event.

11.9. Function: Start a set of counters (FID #3)

struct sbiret sbi_pmu_counter_start(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long start_flags,
uinté4_t initial_value)

Start or enable a set of counters on the calling hart with the specified initial value. The
counter_idx_base and counter_idx_mask parameters represent the set of counters whereas
the initial_value parameter specifies the initial value of the counter.

The bit definitions of the start_flags parameter are shown in the Table 39 below.

Table 39. PMU Counter Start Flags

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.10. Function: Stop a set of counters (FID #4) | Page 41

Flag Name Bits Description
SBI_PMU_START_SET_INIT_VALUE 0:0 Set the value of counters based on the
initial_value parameter
SBI_PMU_START FLAG_INIT_ SNAPSHOT 11 Initialize the given counters from
shared memory if available.
RESERVED 2:(XLEN-1) Reserved for future use
When SBI_PMU_START_SET_INIT_VALUE or

SBI_PMU_START_FLAG_INIT_SNAPSHOT is not set in start_flags, the counter

value will not be modified and the event counting will start from the current counter value.

The shared memory address must be set during boot via sbi_pmu_snapshot_set_shmem before

the SBI_PMU_START_FLAG_INIT_SNAPSHOT flag may be used. The SBI implementation must
initialize all the given valid counters (to be started) from the value set in the shared snapshot memory.

SBI_PMU_START_SET_INIT_VALUE
SBI_PMU_START_FLAG_INIT_SNAPSHOT are mutually exclusive as the former is

only valid for a single counter.

and

The possible error codes returned in shiret.error are shown in the Table 40 below.

Error code
SBI_SUGCESS
SBI_ERR_INVALID PARAM

SBI_ERR_ALREADY STARTED
SBI_ERR_NO_ SHMEM

Table 40. PMU Counter Start Errors

Description

counter started successfully.

set of counters has at least one invalid counter or the given flag
parameter has an undefined bit set.

set of counters includes at least one counter which is already started.

the snapshot shared memory is not available and
SBI_PMU_START_FLAG_INIT_SNAPSHOT is setin the flags.

11.10. Function: Stop a set of counters (FID #4)

struct shiret sbi_pmu_counter_stop(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long stop_flags)

Stop or disable a set of counters on the calling hart. The counter_idx_base and
counter_idx_mask parameters represent the set of counters. The bit definitions of the
stop_flags parameter are shown in the Table 41 below.

Table 41. PMU Counter Stop Flags

Flag Name Bits
SBI_PMU STOP FLAG RESET 0:0
SBI_PMU_STOP_FLAG TAKE_ SNAPSHOT 11
RESERVED 2:(XLEN-1)

Description
Reset the counter to event mapping.

Save a snapshot of the given counter’s
values in the shared memory if
available.

Reserved for future use

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.11. Function: Read a firmware counter (FID #5) | Page 42

The shared memory address must be set during boot via sbhi_pmu_snapshot_set_shmem before

the SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT flag may be used. The SBI implementation must save
the current wvalue of all the stopped counters in the shared memory if

SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT is set. The values corresponding to all other counters
must not be modified. The SBI implementation must additionally update the overflown counter
bitmap in the shared memory.

The possible error codes returned in shiret.error are shown in the Table 42 below.

Table 42. PMU Counter Stop Errors

Error code Description

SBI_SUCCESS counter stopped successfully.

SBI_ERR _INVALID PARAM set of counters has at least one invalid counter or the given flag
parameter has an undefined bit set.

SBI_ERR_ALREADY_STOPPED set of counters includes at least one counter which is already stopped.

SBI_ERR_NO_SHMEM the snapshot shared memory is not available and

SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT is set in the flags.

11.11. Function: Read a firmware counter (FID #5)

struct sbiret sbi_pmu_counter_fw_read(unsigned long counter_idx)

Provide the current firmware counter value in sbiret.value. On RV32 systems, the
sbiret.value will only contain the lower 32 bits of the current firmware counter value.

The possible error codes returned in sbiret.error are shown in the Table 43 below.

Table 43. PMU Counter Firmware Read Errors

Error code Description
SBI_SUCCESS firmware counter read successfully.
SBI_ERR_INVALID PARAM counter_idx points to a hardware counter or an invalid counter.

11.12. Function: Read a firmware counter high bits (FID #6)

struct shiret sbi_pmu_counter_fw_read_hi(unsigned long counter_idx)

Provide the upper 32 bits of the current firmware counter value in shiret.value. This function
always returns zero in shiret.value for RV64 (or higher) systems.

The possible error codes returned in shiret.error are shown in Table 44 below.

Table 44. PMU Counter Firmware Read High Errors

Error code Description

SBI_SUCCESS Firmware counter read successfully.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.13. Function: Set PMU snapshot shared memory (FID #7) | Page 43

Error code Description

SBI_ERR_INVALID PARAM counter_idx points to a hardware counter or an invalid counter.

11.13. Function: Set PMU snapshot shared memory (FID #7)

struct shiret sbi_pmu_snapshot_set_shmem(unsigned long shmem_phys_1lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set and enable the PMU snapshot shared memory on the calling hart.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then
shmem_phys_1o0 specifies the lower XLEN bits and shmem_phys_h1 specifies the upper XLEN bits

of the snapshot shared memory physical base address. The shmem_phys_10o MUST be 4096 bytes
(i.e. page) aligned and the size of the snapshot shared memory must be 4096 bytes. The layout of the
snapshot shared memory is described in Table 45.

If both shmem_phys_1lo and shmem_phys_hi parameters are all-ones bitwise then the PMU
snapshot shared memory is cleared and disabled.

The flags parameter is reserved for future use and must be zero.
This is an optional function and the SBI implementation may choose not to implement it.

Table 45. SBI PMU Snapshot shared memory layout

Name Offset Size Description

counter_overflow_bitmap 0x0000 8 A bitmap of all logical overflown
counters relative to the

counter_idx_base. This is valid

only if the Sscofpmf ISA extension is
available. Otherwise, it must be zero.

counter_values 0x0008 512 An array of 64-bit logical counters
where each index represents the value of
each logical counter associated with
hardware/firmware relative to the

counter_idx_base.

Reserved 0x0208 3576 Reserved for future use

Any future revisions to this structure should be made in a backward compatible manner and will be
associated with an SBI version.

The logical counter indicies in the counter_overflow_bitmap and counter_values array are
relative w.rt to counter_idx_base argument present in the shi_pmu_counter_stop and

sbi_pmu_counter_start functions. This allows the users to use snapshot feature for more than
XLEN counters if required.

This function should be invoked only once per hart at boot time. Once configured, the SBI
implementation has read/write access to the shared memory when shi_pmu_counter_stop is
invoked with the SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT flag set. The SBI implementation has

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.14. Function: Get PMU Event info (FID #8) | Page 44

read only access when sbi_pmu_counter_start is invoked with the
SBI_PMU_START_FLAG_INIT_SNAPSHOT flag set. The SBI implementation must not access this

memory any other time.

The possible error codes returned in sbiret.error are shown in Table 46 below.

Table 46. PMU Setup Snapshot Area Errors

Error code Description
SBI_SUCCESS Shared memory was set or cleared successfully.
SBI_ERR_NOT_SUPPORTED The SBI PMU snapshot functionality is not available in the SBI

implementation.

SBI_ERR_INVALID PARAM The flags parameter is not zero or the shmem_phys_Tlo
parameter is not 4096 bytes aligned.

SBI_ERR_INVALID ADDRESS The shared memory pointed to by the shmem_phys_1o and

shmem_phys_hi parameters is not writable or does not satisfy
other requirements of Section 3.2.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

11.14. Function: Get PMU Event info (FID #8)

struct sbiret sbi_pmu_event_get_info(unsigned long shmem_phys_1lo,
unsigned long shmem_phys_hi,
unsigned long num_entries,
unsigned long flags)

Get details about any PMU event via shared memory. The supervisor software can get event specific
information for multiple events in one shot by writing an entry for each event in the shared memory.
Each entry in the shared memory must be encoded as follows:

Table 47. Event info entry format

Word Name ACCESS(SBI Encoding
Implementation)
0 event_idx RO BIT[0:19] - Describes the event_1idx BIT[20:31] - Reserved

for the future purpose. Must be zero.

1 output RW BIT[O] - Boolean value to indicate event_idx is supported
or not. The SBI implmenentation MUST update this entire

32-bit word if valid event_idx and event_data (if
applicable) are specified in the entry. BIT[1:31] - Reserved for
the future purpose. Must be zero

2-3 event_data RO BIT[0:63] - Valid when event_idx. type is either 0x2, 0x3
or Oxf. It describes the event_data for the specific event
specified in event_idx if applicable.

The caller must initialize the shared memory and add num_entries of each event for which it
wishes to discover information about. The shmem_phys_1o MUST be 16-byte aligned and the size of
the share memory must be (16 * num_entries) bytes.

The flags parameter is reserved for future use and MUST be zero.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

11.15. Function Listing | Page 45

The SBI implementation MUST NOT touch the shared memory once this call returns as supervisor
software may free the memory at any time.

The possible error codes returned in sbiret.error are shown in Table 48 below.

Table 48. PMU Get Event Info Errors

Error code Description
SBI_SUCCESS The output field is updated for each event.
SBI_ERR_NOT_SUPPORTED The SBI PMU event info retrieval function is not available in the SBI

implementation.

SBI_ERR_INVALID_PARAM The flags parameter is not zero or the shmem_phys_1o

parameter is not 16-bytes aligned or event_1idx value doesn’t
conform with the encodings defined in the specification.

SBI_ERR_INVALID_ADDRESS The shared memory pointed to by the shmem_phys_1lo and

shmem_phys_hi parameters is not writable or does not satisfy
other requirements of Section 3.2.

SBI_ERR_FAILED The write failed for unspecified or unknown other reasons.

11.15. Function Listing

Table 49. PMU Function List

Function Name SBI Version FID EID

sbi_pmu_num_counters 0.3 0] 0x504D55
sbi_pmu_counter_get_info 0.3 1 0x504D55
sbi_pmu_counter_config_matching 0.3 2 0x504D55
sbi_pmu_counter_start 0.3 3 0x504D55
sbi_pmu_counter_stop 0.3 4 0x504D55
sbi_pmu_counter_fw_read 0.3 5 0x504D55
sbi_pmu_counter_fw_read_hi 2.0 6 0x504D55
sbi_pmu_snapshot_set_shmem 2.0 7 0x504D55
sbi_pmu_event_get_info 3.0 8 0x504D55

RISC-V Supervisor Binary Interface Specification | © RISC-V International

12.1. Function: Console Write (FID #0) | Page 46
Chapter 12. Debug Console Extension (EID #0x4442434E "DBCN")

The debug console extension defines a generic mechanism for debugging and boot-time early prints
from supervisor-mode software.

This extension replaces the legacy console putchar (EID #0x01) and console getchar (EID #0x02)
extensions. The debug console extension allows supervisor-mode software to write or read multiple
bytes in a single SBI call.

If the underlying physical console has extra bits for error checking (or correction) then these extra bits
should be handled by the SBI implementation.

o It is recommended that bytes sent/received using the debug console extension follow UTF-
8 character encoding.

12.1. Function: Console Write (FID #0)

struct shiret sbi_debug_console_write(unsigned long num_bytes,
unsigned long base_addr_1lo,
unsigned long base_addr_hi)

Write bytes to the debug console from input memory.

The num_bytes parameter specifies the number of bytes in the input memory. The physical base
address of the input memory is represented by two XLEN bits wide parameters. The base_addr_1lo

parameter specifies the lower XLEN bits and the base_addr_hi parameter specifies the upper
XLEN bits of the input memory physical base address.

This is a non-blocking SBI call and it may do partial/no writes if the debug console is not able to
accept more bytes.

The number of bytes written is returned in sbiret.value and the possible error codes returned in
sbiret.error areshown in Table 50 below.

Table 50. Debug Console Write Errors

Error code Description
SBI_SUCCESS Bytes written successfully.
SBI_ERR_INVALID PARAM The memory pointed to by the num_bytes, base_addr_1o, and

base_addr_hi parameters does not satisfy the requirements
described in the Section 3.2

SBI_ERR_DENIED Writes to the debug console is not allowed.

SBI_ERR_FAILED Failed to write due to I/O errors.

12.2. Function: Console Read (FID #1)

struct sbiret sbi_debug_console_read(unsigned long num_bytes,
unsigned long base_addr_1lo,

RISC-V Supervisor Binary Interface Specification | © RISC-V International

12.3. Function: Console Write Byte (FID #2) | Page 47

unsigned long base_addr_hi)

Read bytes from the debug console into an output memory.

The num_bytes parameter specifies the maximum number of bytes which can be written into the
output memory. The physical base address of the output memory is represented by two XLEN bits

wide parameters. The base_addr_lo parameter specifies the lower XLEN bits and the

base_addr_hi parameter specifies the upper XLEN bits of the output memory physical base
address.

This is a non-blocking SBI call and it will not write anything into the output memory if there are no
bytes to be read in the debug console.

The number of bytes read is returned in sbiret.value and the possible error codes returned in
shiret.error are shown in Table 51 below.

Table 51. Debug Console Read Errors

Error code Description
SBI_SUCCESS Bytes read successfully.
SBI_ERR_INVALID PARAM The memory pointed to by the num_bytes, base_addr_1o, and

base_addr_hi parameters does not satisfy the requirements
described in the Section 3.2

SBI_ERR_DENIED Reads from the debug console is not allowed.

SBI_ERR_FAILED Failed to read due to I/O errors.

12.3. Function: Console Write Byte (FID #2)

struct sbiret sbi_debug_console_write_byte(uint8_t byte)

Write a single byte to the debug console.

This is a blocking SBI call and it will only return after writing the specified byte to the debug console.
It will also return, with SBI_ERR _FAILED, if there are I/O errors.

The shiret.value is set to zero and the possible error codes returned in sbiret.error are
shown in Table 52 below.

Table 52. Debug Console Write Byte Errors

Error code Description

SBI_SUCCESS Byte written successfully.
SBI_ERR_DENIED Write to the debug console is not allowed.
SBI_ERR_FAILED Failed to write the byte due to I/O errors.

12.4. Function Listing

Table 53. DBCN Function List

RISC-V Supervisor Binary Interface Specification | © RISC-V International

12.4. Function Listing | Page 48

Function Name
sbi_debug_console_write
sbi_debug_console_read

sbi_debug_console_write_byte

RISC-V Supervisor Binary Interface Specification | © RISC-V International

SBI Version
2.0
2.0
2.0

FID

EID

0x4442434E
0x4442434E
0x4442434E

13.1. Function: System Suspend (FID #0) | Page 49
Chapter 13. System Suspend Extension (EID #0x53555350 "SUSP")

The system suspend extension defines a set of system-level sleep states and a function which allows
the supervisor-mode software to request that the system transitions to a sleep state. Sleep states are

identified with 32-bit wide identifiers (sleep_type). The possible values for the identifiers are
shown in Table 54.

The term "system" refers to the world-view of the supervisor software domain invoking the call. System
suspend may only suspend the part of the overall system which is visible to the invoking supervisor
software domain.

The system suspend extension does not provide any way for supported sleep types to be probed.
Platforms are expected to specify their supported system sleep types and per-type wake up devices in

their hardware descriptions. The SUSPEND_TO_RAM sleep type is the one exception, and its presence
is implied by that of the extension.

Table 54. SUSP System Sleep Types

Type Name Description

0 SUSPEND_TO_RAM This is a “suspend to RAM” sleep type, similar to ACPI's
S2 or S3. Entry requires all but the calling hart be in the

HSM STOPPED state and all hart registers and CSRs
saved to RAM.

0x00000001 - OxTfffffff Reserved for future use
0x80000000 - Oxffffffff Platform-specific system sleep types

13.1. Function: System Suspend (FID #0)

struct sbiret sbi_system_suspend(uint32_t sleep_type,
unsigned long resume_addr,
unsigned long opaque)

A return from a shi_system_suspend() call implies an error and an error code from Table 56 will
be in shiret.error. A successful suspend and wake up, results in the hart which initiated the
suspend, resuming from the STOPPED state. To resume, the hart will jump to supervisor-mode, at the
address specified by resume_addr, with the specific register values described in Table 55.

Table 55. SUSP System Resume Register State

Register Name Register Value
satp 0

sstatus.SIE 0

a0 hartid

al opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient for resume_addr, because the hart

o will resume execution in supervisor-mode with the MMU off, hence resume_addr must
be less than XLEN bits wide.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

13.2. Function Listing | Page 50

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a system suspend.

The opaque parameter is an XLEN-bit value which will be set in the al register when the hart
resumes execution at resume_addr after a system suspend.

Besides ensuring all entry criteria for the selected sleep type are met, such as ensuring other harts are

in the STOPPED state, the caller must ensure all power units and domains are in a state compatible
with the selected sleep type. The preparation of the power units, power domains, and wake-up devices
used for resumption from the system sleep state is platform specific and beyond the scope of this
specification.

When supervisor software is running inside a virtual machine, the SBI implementation is provided by
a hypervisor. System suspend will behave similarly to the native case from the point of view of the
supervisor software.

The possible error codes returned in sbiret.error are shown in Table 56.

Table 56. SUSP System Suspend Errors

Error code Description
SBI_ERR_INVALID PARAM sleep_type is reserved or is platform-specific and unimplemented.
SBI_ERR_NOT_SUPPORTED sleep_type is not reserved and is implemented, but the platform does not support

it due to one or more missing dependencies.

SBI_ERR_INVALID_ADDRESS resume_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.
* Executable access to the address is prohibited by a physical memory protection
mechanism or H-extension G-stage for supervisor mode.

SBI_ERR_DENIED The suspend request failed due to unsatisfied entry criteria.

SBI_ERR_FAILED The suspend request failed for unspecified or unknown other reasons.

13.2. Function Listing

Table 57. SUSP Function List

Function Name SBI Version FID EID
sbi_system_suspend 2.0 0 0x53555350

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 14. CPPC Extension (EID #0x43505043 "CPPC") | Page 51
Chapter 14. CPPC Extension (EID #0x43505043 "CPPC")

ACPI defines the Collaborative Processor Performance Control (CPPC) mechanism, which is an
abstract and flexible mechanism for the supervisor-mode power-management software to collaborate
with an entity in the platform to manage the performance of the processors.

The SBI CPPC extension provides an abstraction to access the CPPC registers through SBI calls. The
CPPC registers can be memory locations shared with a separate platform entity such as a BMC. Even
though CPPC is defined in the ACPI specification, it may be possible to implement a CPPC driver
based on Device Tree.

Table 58 defines 32-bit identifiers for all CPPC registers to be used by the SBI CPPC functions. The
first half of the 32-bit register space corresponds to the registers as defined by the ACPI specification.
The second half provides the information not defined in the ACPI specification, but is additionally
required by the supervisor-mode power-management software.

Table 58. CPPC Registers

Register ID Register Bit Width Attribute = Description
0x00000000 HighestPerformance 32 Read-only ACPI Spec 6.5:8.4.6.1.1.1
0x00000001 NominalPerformance 32 Read-only ACPI Spec 6.5:8.4.6.1.1.2
0x00000002 LowestNonlinearPerformance 32 Read-only ACPI Spec 6.5:8.4.6.1.14
0x00000003 LowestPerformance 32 Read-only ACPI Spec 6.5:8.4.6.1.1.5
0x00000004 GuaranteedPerformanceRegister 32 Read-only ACPI Spec 6.5: 8.4.6.1.1.6
0x00000005 DesiredPerformanceRegister 32 Read / ACPI Spec 6.5: 8.4.6.1.2.3
Write
0x00000006 MinimumPerformanceRegister 32 Read / ACPI Spec 6.5: 84.6.1.2.2
Write
0x00000007 MaximumPerformanceRegister 32 Read / ACPI Spec 6.5: 8.4.6.1.2.1
Write
0x00000008 PerformanceReductionToleranceRegi 32 Read / ACPI Spec 6.5: 8.4.6.1.2.4
ster Write
0x00000009 TimeWindowRegister 32 Read / ACPI Spec 6.5: 84.6.1.2.5
Write
0x0000000A CounterWraparoundTime 32/64 Read-only ACPI Spec 6.5:8.4.6.1.3.1
0x0000000B ReferencePerformanceCounterRegist 32 /64 Read-only ACPI Spec 6.5: 8.4.6.1.3.1
er
0x0000000C DeliveredPerformanceCounterRegist 32 / 64 Read-only ACPI Spec 6.5: 8.4.6.1.3.1
er
0x0000000D PerformanceLimitedRegister 32 Read / ACPI Spec 6.5: 8.4.6.1.3.2
Write
0x0000000E CPPCEnableRegister 32 Read / ACPI Spec 6.5: 8.4.6.1.4
Write
0x0000000F AutonomousSelectionEnable 32 Read / ACPI Spec 6.5: 84.6.1.5
Write
0x00000010 AutonomousActivityWindowRegister =32 Read / ACPI Spec 6.5: 8.4.6.1.6
Write
0x00000011 EnergyPerformancePreferenceRegist 32 Read / ACPI Spec 6.5: 84.6.1.7
er Write
0x00000012 ReferencePerformance 32 Read-only ACPI Spec 6.5:8.4.6.1.1.3
0x00000013 LowestFrequency 32 Read-only ACPI Spec 6.5:8.4.6.1.1.7

RISC-V Supervisor Binary Interface Specification | © RISC-V International

14.1. Function: Probe CPPC register (FID #0) | Page 52

Register ID Register Bit Width Attribute Description
0x00000014 NominalFrequency 32 Read-only ACPI Spec 6.5: 8.4.6.1.1.7
0x00000015 - Reserved for future use.
Ox7FFFFFFF

0x80000000 TransitionLatency 32 Read-only Provides the maximum

(worst-case)
performance state
transition latency in
nanoseconds.

0x80000001 - Reserved for future use.
OxFFFFFFFF

14.1. Function: Probe CPPC register (FID #0)

struct sbiret sbi_cppc_probe(uint32_t cppc_reg_id)

Probe whether the CPPC register as specified by the cppc_reg_id parameter is implemented or not
by the platform.

If the register is implemented, sbiret.value will contain the register width. If the register is not
implemented, shiret.value will be set to O.

The possible error codes returned in sbiret.error are shown in Table 59.

Table 59. CPPC Probe Errors

Error code Description

SBI_SUCCESS Probe completed successfully.

SBI_ERR_INVALID PARAM cppc_reg_idis reserved.

SBI_ERR_FAILED The probe request failed for unspecified or unknown other reasons.

14.2. Function: Read CPPC register (FID #1)

struct sbiret sbi_cppc_read(uint32_t cppc_reg_id)

Reads the register as specified in the cppc_reg_id parameter and returns the value in

sbiret.value. When supervisor mode XLEN is 32, the sbiret.value will only contain the lower
32 bits of the CPPC register value.

The possible error codes returned in sbiret.error are shown in Table 60.

Table 60. CPPC Read Errors

Error code Description

SBI_SUCCESS Read completed successfully.

SBI_ERR_INVALID PARAM cppc_reg_id is reserved.
SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

14.3. Function: Read CPPC register high bits (FID #2) | Page 53

Error code Description
SBI_ERR_DENIED cppc_reg_id is a write-only register.
SBI_ERR_FAILED The read request failed for unspecified or unknown other reasons.

14.3. Function: Read CPPC register high bits (FID #2)

struct sbiret sbi_cppc_read_hi(uint32_t cppc_reg_id)

Reads the upper 32-bit value of the register specified in the cppc_reg_id parameter and returns the

value in sbiret.value. This function always returns zero in shiret.value when supervisor
mode XLEN is 64 or higher.

The possible error codes returned in shiret.error are shown in Table 61.

Table 61. CPPC Read Hi Errors

Error code Description

SBI_SUCCESS Read completed successfully.

SBI_ERR_INVALID PARAM cppc_reg_idis reserved.

SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.
SBI_ERR_DENIED cppc_reg_id is a write-only register.

SBI_ERR_FAILED The read request failed for unspecified or unknown other reasons.

14.4. Function: Write to CPPC register (FID #3)

struct sbiret sbi_cppc_write(uint32_t cppc_reg_id, uinté4_t val)

Writes the value passed in the val parameter to the register as specified in the cppc_reg_id
parameter.

The possible error codes returned in shiret.error are shown in Table 62.

Table 62. CPPC Write Errors

Error code Description

SBI_SUCCESS Write completed successfully.

SBI_ERR_INVALID PARAM cppc_reg_idis reserved.

SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.
SBI_ERR_DENIED cppc_reg_id is a read-only register.

SBI_ERR_FAILED The write request failed for unspecified or unknown other reasons.

14.5. Function Listing

Table 63. CPPC Function List

RISC-V Supervisor Binary Interface Specification | © RISC-V International

14.5. Function Listing | Page 54

Function Name
sbi_cppc_probe
sbi_cppc_read
sbi_cppc_read_hi

sbi_cppc_write

SBI Version FID
2.0 0
2.0 1
2.0 2
2.0 3

RISC-V Supervisor Binary Interface Specification | © RISC-V International

EID

0x43505043
0x43505043
0x43505043
0x43505043

Chapter 15. Nested Acceleration Extension (EID #0x4E41434C "NACL") | Page 55
Chapter 15. Nested Acceleration Extension (EID #0x4E41434C "NACL")

Nested virtualization is the ability of a hypervisor to run another hypervisor as a guest. RISC-V nested
virtualization requires an LO hypervisor (running in hypervisor-mode) to trap-and-emulate the RISC-
V H-extension [1] functionality (such as CSR accesses, HFENCE instructions, HLV/HSV instructions,
etc.) for the L1 hypervisor (running in virtualized supervisor-mode).

The SBI nested acceleration extension defines a shared memory based interface between the SBI
implementation (or LO hypervisor) and the supervisor software (or L1 hypervisor) which allows both
to collaboratively reduce traps taken by the LO hypervisor for emulating RISC-V H-extension
functionality. The nested acceleration shared memory allows the L1 hypervisor to batch multiple
RISC-V H-extension CSR accesses and HFENCE requests which are then emulated by the LO
hypervisor upon an explicit synchronization SBI call.

o The M-mode firmware should not implement the SBI nested acceleration extension if the
underlying platform has the RISC-V H-extension implemented in hardware.

This SBI extension defines optional features which MUST be discovered by the supervisor software (or
L1 hypervisor) before using the corresponding SBI functions. Each nested acceleration feature is
assigned a unique ID which is an unsigned 32-bit integer. The Table 64 below provides a list of all
nested acceleration features.

Table 64. Nested acceleration features

Feature ID Feature Name Description
0x00000000 SBI_NACL_FEAT_SYNC_CSR Synchronize CSR
0x00000001 SBI NACL_ FEAT SYNC_ HFENCE Synchronize HFENCE
0x00000002 SBI_NACL_FEAT_SYNC_SRET Synchronize SRET
0x00000003 SBI_NACL_FEAT_AUTOSWAP_CSR Autoswap CSR

> 0x00000003 RESERVED Reserved for future use

To use the SBI nested acceleration extension, the supervisor software (or L1 hypervisor) MUST set up a
nested acceleration shared memory physical address for each virtual hart at boot-time. The physical
base address of the nested acceleration shared memory MUST be 4096 bytes (i.e. page) aligned and
the size of the nested acceleration shared memory must be 4096 + (1024 * (XLEN / 8)) bytes.
The Table 65 below shows the layout of nested acceleration shared memory.

Table 65. Nested acceleration shared memory layout

Name Offset Size (bytes) Description
Scratch space 0x00000000 4096 Nested acceleration feature specific data.
CSR space 0x00001000 XLEN * 128 An array of 1024 XLEN-bit words where each

word corresponds to a possible RISC-V H-
extension CSR defined in the Table 2.1 of the
RISC-V privileged specification [1].

Any nested acceleration feature may define the contents of the scratch space shown in the Table 65
above if required.

The contents of the CSR space shown in the Table 65 above is an array of RISC-V H-extension CSR

values where CSR <x> is at index <i> = ((<x> & 0xc00) >> 2) | (<x> & Oxff). The SBI
implementation (or LO hypervisor) MUST update the CSR space whenever the state of any RISC-V H-
extension CSR changes unless some nested acceleration feature defines a different behaviour. The

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.1. Feature: Synchronize CSR (ID #0) | Page 56
Table 66 below shows CSR space index ranges for all possible 1024 RISC-V H-extension CSRs.

Table 66. Nested acceleration H-extension CSR index ranges

H-extension CSR address SBI NACL CSR space index
[11:10] [9:8] [7:4] Hex Range Hex Range

00 10 XXXX 0x200 - Ox2ff 0x000 - Ox0ff
01 10 OXXX 0x600 - Ox67f 0x100 - Ox17f
01 10 10xx 0x680 - Ox6bF 0x188 - Ox1bf
01 10 11xx 0x6cO - Ox6ff 0x1cO - Ox1ff
10 10 OXXX 0xab0 - Oxa7f 0x200 - Ox27f
10 10 10xx 0xa80 - Oxabf 0x280 - Ox2bf
10 10 11xx OxacO - Oxaff 0x2cO - Ox2ff
11 10 OxXX 0xeB0 - Oxe7f 0x300 - Ox37f
11 10 10xx 0xe80 - Oxebf 0x380 - Ox3bf
11 10 11xx OxecO - Oxeff 0x3c0 - Ox3ff

15.1. Feature: Synchronize CSR (ID #0)

The synchronize CSR feature describes the ability of the SBI implementation (or LO hypervisor) to
allow supervisor software (or L1 hypervisor) to write RISC-V H-extension CSRs using the CSR space.

This nested acceleration feature defines the scratch space offset range OXOF80 - OxOFFF (128
bytes) as nested CSR dirty bitmap. The nested CSR dirty bitmap contains 1-bit for each possible RISC-
V H-extension CSR.

To write a CSR <X> in nested acceleration shared memory, the supervisor software (or L1 hypervisor)
MUST do the following:

L Compute <i> = ((<x> & 0xc00) >> 2) | (<x> & Oxff)
2. Write a new CSR value at word with index <i> in the CSR space

3. Set the <1> bit in the nested CSR dirty bitmap

To synchronize a CSR <x>, the SBI implementation (or LO hypervisor) MUST do the following:

L Compute <i> = ((<x> & 0xc00) >> 2) | (<x> & Oxff)
2. If bit <i> is not set in the nested CSR dirty bitmap then goto step 5

3. Emulate write to CSR <X> with the new CSR value taken from the word with index <i> in the CSR
space

4. Clear the <i> bit in the nested CSR dirty bitmap
S. Write back the latest CSR value of CSR <X> to the word with index <i> in the CSR space
When synchronizing multiple CSRs, if the value of a CSR <y> depends on the value of some other

CSR <x> then the SBI implementation (or LO hypervisor) MUST synchronize CSR <x> before CSR
<y>. For example, the value of CSR hip depends on the value of the CSR hvip, which means hvip is

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.2. Feature: Synchronize HFENCE (ID #1) | Page 57

emulated and written first, followed by hip.

15.2. Feature: Synchronize HFENCE (ID #1)

The synchronize HFENCE feature describes the ability of the SBI implementation (or LO hypervisor)
to allow supervisor software (or L1 hypervisor) to issue HFENCE using the scratch space.

This nested acceleration feature defines the scratch space offset range 0x0800 - OxOF7F (1920
bytes) as an array of nested HFENCE entries. The total number of nested HFENCE entries are 3840 /
XLEN where each nested HFENCE entry consists of four XLEN-bit words.

A nested HFENCE entry is equivalent to an HFENCE over a range of guest addresses. The Table 67
below shows the nested HFENCE entry format whereas Table 68 below provides a list of nested
HFENCE entry types. Upon an explicit synchronize HFENCE request from supervisor software (or L1
hypervisor), the SBI implementation (or LO hypervisor) will process nested HFENCE entries with the

Config.Pending bit set. After processing pending nested HFENCE entries, the SBI implementation
(or LO hypervisor) will clear the Config.Pending bit of these entries.

Table 67. Nested HFENCE entry format

Word Name Encoding

0] Config Config information about the nested HFENCE entry

BIT[XLEN-1:XLEN-1] - Pending
BIT[XLEN-2:XLEN-4] - Reserved and must be zero
BIT[XLEN-5:XLEN-8] - Type
BIT[XLEN-9:XLEN-9] - Reserved and must be zero
BIT[XLEN-10:XLEN-16] - Order
if XLEN == 32 then

BIT[15:9] - VMID

BIT[8:0] - ASID
else

BIT[29:16] - VMID

BIT[15:0] - ASID

The page size for invalidation must be
1 << (Config.0rder + 12) bytes.

1 Page_Number Page address right shifted by Config.0rder + 12
2 Reserved Reserved for future use and must be zero
3 Page _Count Number of pages to invalidate

Table 68. Nested HFENCE entry types

Type Name Description

0 GVMA Invalidate a guest physical address range across all VMIDs. The VMID and
ASID fields of the Config word are ignored and MUST be zero.

1 GVMA_ALL Invalidate all guest physical addresses across all VMIDs. The Order,
VMID and ASID fields of the Config word are ignored and MUST be

zero. The Page_Number and Page_Count words are ignored and
MUST be zero.

2 GVMA_VMID Invalidate a guest physical address range for a particular VMID. The
ASID field of the Config word is ignored and MUST be zero.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.3. Feature: Synchronize SRET (ID #2) | Page 58

Type Name Description

3 GVMA_VMID _ALL Invalidate all guest physical addresses for a particular VMID. The Order
and ASID fields of the Config word are ignored and MUST be zero. The
Page_Number and Page_Count words are ignored and MUST be zero.

4 VVMA Invalidate a guest virtual address range for a particular VMID. The ASID
field of the Config word is ignored and MUST be zero.

3 VVMA_ALL Invalidate all guest virtual addresses for a particular VMID. The Order
and ASID fields of the Config word are ignored and MUST be zero. The
Page_Number and Page_Count words are ignored and MUST be zero.

6 VVMA _ASID Invalidate a guest virtual address range for a particular VMID and ASID.

7 VVMA _ASID ALL Invalidate all guest virtual addresses for a particular VMID and ASID. The
Order field of the Config word is ignored and MUST be zero. The
Page_Number and Page_Count words are ignored and MUST be zero.

>7 Reserved Reserved for future use.
To add a nested HFENCE entry, the supervisor software (or L1 hypervisor) MUST do the following:

L Find an unused nested HFENCE entry with Config.Pending == 0
2. Update the Page_Number and Page_Count words in the nested HFENCE entry

3. Update the Config word in the nested HFENCE entry such that Config.Pending bit is set

To synchronize a nested HFENCE entry, the SBI implementation (or LO hypervisor) MUST do the
following:

L 1f Config.Pending == 0 then do nothing and skip below steps
2. Process HFENCE based on details in the nested HFENCE entry

3. Clear the Config.Pending bit in the nested HFENCE entry

15.3. Feature: Synchronize SRET (ID #2)

The synchronize SRET feature describes the ability of the SBI implementation (or LO hypervisor) to
do synchronization of CSRs and HFENCEs in the nested acceleration shared memory for the
supervisor software (or L1 hypervisor) along with SRET emulation.

This nested acceleration feature defines the scratch space offset range 0x0000 - OxO01FF (512
bytes) as nested SRET context. The Table 69 below shows contents of the nested SRET context.

Table 69. Nested SRET context

Offset Name Encoding

0 * (XLEN / 8) Reserved Reserved for future use and must be zero
1 % (XLEN / 8) X1 Value to be restored in GPR X1

2 % (XLEN / 8) X2 Value to be restored in GPR X2

3 % (XLEN / 8) X3 Value to be restored in GPR X3

4 x (XLEN / 8) X4 Value to be restored in GPR X4

5 x (XLEN / 8) X5 Value to be restored in GPR X5

6 * (XLEN / 8) X6 Value to be restored in GPR X6

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.3. Feature: Synchronize SRET (ID #2) | Page 59

Offset Name Encoding

7 % (XLEN / 8) X7 Value to be restored in GPR X7
8 * (XLEN / 8) X8 Value to be restored in GPR X8
9 x (XLEN / 8) X9 Value to be restored in GPR X9
10 * (XLEN / 8) X10 Value to be restored in GPR X10
11 * (XLEN / 8) X11 Value to be restored in GPR X11
12 * (XLEN / 8) X12 Value to be restored in GPR X12
13 * (XLEN / 8) X13 Value to be restored in GPR X13
14 * (XLEN / 8) X14 Value to be restored in GPR X14
15 * (XLEN / 8) X15 Value to be restored in GPR X15
16 * (XLEN / 8) X16 Value to be restored in GPR X16
17 * (XLEN / 8) X17 Value to be restored in GPR X17
18 * (XLEN / 8) X18 Value to be restored in GPR X18
19 x (XLEN / 8) X19 Value to be restored in GPR X19
20 * (XLEN / 8) X20 Value to be restored in GPR X20
21 * (XLEN / 8) X21 Value to be restored in GPR X21
22 x (XLEN / 8) X22 Value to be restored in GPR X22
23 * (XLEN / 8) X23 Value to be restored in GPR X23
24 x (XLEN / 8) X24 Value to be restored in GPR X24
25 x (XLEN / 8) X25 Value to be restored in GPR X25
26 * (XLEN / 8) X26 Value to be restored in GPR X26
27 % (XLEN / 8) X27 Value to be restored in GPR X27
28 * (XLEN / 8) X28 Value to be restored in GPR X28
29 x (XLEN / 8) X29 Value to be restored in GPR X29
30 x (XLEN / 8) X30 Value to be restored in GPR X30
31 * (XLEN / 8) X31 Value to be restored in GPR X31
32 * (XLEN / 8) - OxIFF Reserved Reserved for future use

Before sending a synchronize SRET request to the SBI implementation (or LO hypervisor), the
supervisor software (or L1 hypervisor) MUST write the GPR X<i> values to be restored at offset <1>
* (XLEN / 8) of the nested SRET context.

Upon a synchronize SRET request from the supervisor software (or L1 hypervisor), the SBI
implementation (or LO hypervisor) MUST do the following:
1. If SBI_NACL_FEAT SYNC _CSR feature is available then

a. All RISC-V H-extension CSRs implemented by the SBI implementation (or LO hypervisor) are
synchronized as described in the Section 15.1. This is equivalent to the SBI call

sbi_nacl_sync_csr(-1UL).
2. If SBI_ NACL FEAT SYNC_ HFENCE feature is available then

a. All nested HFENCE entries are synchronized as described in the Section 15.2. This is
equivalent to the SBI call sbi_nacl_sync_hfence(-1UL).

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.4. Feature: Autoswap CSR (ID #3) | Page 60

3. Restore GPR X<1> registers from the nested SRET context.

4. Emulate the SRET instruction as defined by the RISC-V Privilege specification [1].

15.4. Feature: Autoswap CSR (ID #3)

The autoswap CSR feature describes the ability of the SBI implementation (or LO hypervisor) to
automatically swap certain RISC-V H-extension CSR values from the nested acceleration shared
memory in the following situations:

® Before emulating the SRET instruction for a synchronized SRET request from the supervisor
software (or L1 hypervisor).
® After supervisor (or L1) virtualization state changes from ON to OFF.

o The supervisor software (or LI hypervisor) should use the autoswap CSR feature in
conjunction with the synchronize SRET feature.

This nested acceleration feature defines the scratch space offset range 0x0200 - 0x027F (128
bytes) as nested autoswap context. The Table 70 below shows contents of the nested autoswap context.

Table 70. Nested autoswap context

Offset Name Encoding
0 * (XLEN / 8) Autoswap_Flags Autoswap flags
BIT[XLEN-1:1] - Reserved for future use

and must be zero
BIT[0:0] - HSTATUS

1 » (XLEN / 8) HSTATUS Value to be swapped with HSTATUS CSR

2 % (XLEN / 8) - OxTF Reserved Reserved for future use.

To enable automatic swapping of CSRs from the nested autoswap context, the supervisor software (or
L1 hypervisor) MUST do the following:

L write the HSTATUS swap value in the nested autoswap context.

2. Set Autoswap_Flags.HSTATUS bit in the nested autoswap context.

To swap CSRs from the nested autoswap context, the SBI implementation (or LO hypervisor) MUST do
the following:

L 1f Autoswap_Flags.HSTATUS bit is set in the nested autoswap context then swap the
supervisor HSTATUS CSR value with the HSTATUS value in the nested autoswap context.

15.5. Function: Probe nested acceleration feature (FID #0)

struct sbiret sbi_nacl_probe_feature(uint32_t feature_id)

Probe a nested acceleration feature. This is a mandatory function of the SBI nested acceleration

extension. The feature_id parameter specifies the nested acceleration feature to probe. Table 64
provides a list of possible feature IDs.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.6. Function: Set nested acceleration shared memory (FID #1) | Page 61

This function always returns SBI_SUCCESS in shiret.error. It returns 0 in sbiret.value if
the given feature_1id is not available, or 1 in shiret.value if it is available.

15.6. Function: Set nested acceleration shared memory (FID #1)

struct sbiret sbi_nacl_set_shmem(unsigned long shmem_phys_1lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set and enable the shared memory for nested acceleration on the calling hart. This is a mandatory
function of the SBI nested acceleration extension.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then
shmem_phys_10 specifies the lower XLEN bits and shmem_phys_h1 specifies the upper XLEN bits
of the shared memory physical base address. shmem_phys_1o MUST be 4096 bytes (i.e. page)
aligned and the size of the shared memory must be 4096 + (XLEN * 128) bytes.

If both shmem_phys_1lo and shmem_phys_hi parameters are all-ones bitwise then the nested
acceleration features are disabled.

The flags parameter is reserved for future use and must be zero.

The possible error codes returned in shiret.error are shown in Table 71.

Table 71. NACL Set Shared Memory Errors

Error code Description
SBI_SUCCESS Shared memory was set or cleared successfully.
SBI_ERR_INVALID PARAM The flags parameter is not zero or or the shmem_phys_10 parameter is not 4096

bytes aligned.

SBI_ERR_INVALID _ADDRESS The shared memory pointed to by the shmem_phys_10 and shmem_phys_hi
parameters does not satisfy the requirements described in Section 3.2.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

15.7. Function: Synchronize shared memory CSRs (FID #2)

struct sbhiret sbi_nacl_sync_csr(unsigned long csr_num)

Synchronize CSRs in the nested acceleration shared memory. This is an optional function which is

only available if the SBI_NACL_FEAT_SYNC_CSR feature is available. The parameter csr_num
specifies the set of RISC-V H-extension CSRs to be synchronized.

If csr_num is all-ones bitwise then all RISC-V H-extension CSRs implemented by the SBI
implementation (or LO hypervisor) are synchronized as described in the Section 15.1.

If (csr_num & 0x300) == 0x200 and csr_num < B0x1000 then only a single RISC-V H-

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.8. Function: Synchronize shared memory HFENCEs (FID #3) | Page 62
extension CSR specified by the csr_num parameter is synchronized as described in the Section 15.1.

The possible error codes returned in shiret.error are shown in Table 72.

Table 72. NACL Synchronize CSR Errors

Error code Description

SBI_SUCCESS CSRs synchronized successfully.
SBI_ERR_NOT_SUPPORTED SBI_NACL_FEAT_SYNC_CSR feature is not available.
SBI_ERR_INVALID PARAM csr_num is not all-ones bitwise and either:

* (csr_num & 0x300) != 0x200 or
*csr_num >= 0x1000 or
*csr_num is not implemented by the SBI implementation

SBI_ERR_NO_SHMEM Nested acceleration shared memory not available.

15.8. Function: Synchronize shared memory HFENCEs (FID #3)

struct sbiret sbi_nacl_sync_hfence(unsigned long entry_index)

Synchronize HFENCESs in the nested acceleration shared memory. This is an optional function which
is only available if the SBI_NACL_FEAT_SYNC_HFENCE feature is available. The parameter

entry_index specifies the set of nested HFENCE entries to be synchronized.

If entry_index is all-ones bitwise then all nested HFENCE entries are synchronized as described in
the Section 15.2.

If entry_index < (3840 / XLEN) then only a single nested HFENCE entry specified by the
entry_index parameter is synchronized as described in the Section 15.2.

The possible error codes returned in shiret.error are shown in Table 73.

Table 73. NACL Synchronize HFENCE Errors

Error code Description

SBI_SUCCESS HFENCESs synchronized successfully.
SBI_ERR_NOT_SUPPORTED SBI_NACL FEAT_ SYNC_HFENCE feature is not available.
SBI_ERR_INVALID_PARAM entry_index is not all-ones bitwise and

entry_index >= (3840 / XLEN).

SBI_ERR_NO_ SHMEM Nested acceleration shared memory not available.

15.9. Function: Synchronize shared memory and emulate SRET (FID #4)

struct sbiret sbi_nacl_sync_sret(void)

Synchronize CSRs and HFENCEs in the nested acceleration shared memory and emulate the SRET
instruction. This is an optional function which is only available if the
SBI _NACL_ FEAT_ SYNC _SRET feature is available.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

15.10. Function Listing | Page 63

This function is used by supervisor software (or L1 hypervisor) to do a synchronize SRET request and
the SBI implementation (or LO hypervisor) MUST handle it as described in the Section 15.3.

This function does not return upon success and the possible error codes returned in shiret.error
upon failure are shown in Table 74.

Table 74. NACL Synchronize SRET Errors

Error code Description
SBI_ERR_NOT_SUPPORTED SBI_NACL_FEAT_ SYNC_SRET feature is not available.
SBI_ERR_NO_SHMEM Nested acceleration shared memory not available.

15.10. Function Listing

Table 75. NACL Function List

Function Name SBI Version FID EID

sbi_nacl_probe _feature 2.0 0 0x4E41434C
sbi_nacl set shmem 2.0 1 0x4E41434C
sbi_nacl_sync_csr 2.0 2 0x4E41434C
sbi_nacl_sync_hfence 2.0 3 0x4E41434C
sbi_nacl_sync_sret 2.0 4 0x4E41434C

RISC-V Supervisor Binary Interface Specification | © RISC-V International

16.1. Function: Set Steal-time Shared Memory Address (FID #0) | Page 64
Chapter 16. Steal-time Accounting Extension (EID #0x535441 "STA")

SBI implementations may encounter situations where virtual harts are ready to run, but must be
withheld from running. These situations may be, for example, when multiple SBI domains share
processors or when an SBI implementation is a hypervisor and guest contexts share processors with
other guest contexts or host tasks. When virtual harts are at times withheld from running, observers
within the contexts of the virtual harts may need a way to account for less progress than would
otherwise be expected. The time a virtual hart was ready, but had to wait, is called "stolen time" and the
tracking of it is referred to as steal-time accounting. The Steal-time Accounting (STA) extension
defines the mechanism in which an SBI implementation provides steal-time and preemption
information, for each virtual hart, to supervisor-mode software.

16.1. Function: Set Steal-time Shared Memory Address (FID #0)

struct shiret sbi_steal_time_set_shmem(unsigned long shmem_phys_1lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set the shared memory physical base address for steal-time accounting of the calling virtual hart and
enable the SBI implementation’s steal-time information reporting.

If shmem_phys_1lo and shmem_phys_h1i are not all-ones bitwise, then shmem_phys_71o specifies
the lower XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the shared memory

physical base address. shmem_phys_1o MUST be 64-byte aligned. The size of the shared memory
must be at least 64 bytes. The SBI implementation MUST zero the first 64 bytes of the shared memory
before returning from the SBI call.

If shmem_phys_1lo and shmem_phys_hi are all-ones bitwise, the SBI implementation will stop
reporting steal-time information for the virtual hart.

The flags parameter is reserved for future use and MUST be zero.

It is not expected for the shared memory to be written by the supervisor-mode software while it is in
use for steal-time accounting. However, the SBI implementation MUST not misbehave if a write from
supervisor-mode software occurs, however, in that case, it MAY leave the shared memory filled with
inconsistent data.

The SBI implementation MUST stop writing to the shared memory when the supervisor-mode
software is not runnable, such as upon system reset or system suspend.

Not writing to the shared memory when the supervisor-mode software is not runnable
o avoids unnecessary work and supports repeatable capture of a system image while the
supervisor-mode software is suspended.

The shared memory layout is defined in Table 76

Table 76. STA Shared Memory Structure

RISC-V Supervisor Binary Interface Specification | © RISC-V International

16.2. Function Listing | Page 65

Name Offset Size Description

sequence 0 4 The SBI implementation MUST increment this field to an
odd value before writing the steal field, and increment it
again to an even value after writing steal (i.e. an odd
sequence number indicates an in-progress update). The SBI
implementation SHOULD ensure that the sequence field
remains odd for only very short periods of time.

The supervisor-mode software MUST check this field before

and after reading the stea'l field, and repeat the read if it is
different or odd.

This sequence field enables the value of the steal field to be read
by supervisor-mode software executing in a 32-bit environment.

flags 4 4 Always zero.

Future extensions of the SBI call might allow the supervisor-
mode software to write to some of the fields of the shared
memory. Such extensions will not be enabled as long as a zero
value is used for the flags argument to the SBI call.

steal 8 8 The amount of time in which this virtual hart was not idle
and scheduled out, in nanoseconds. The time during which
the virtual hart is idle will not be reported as steal-time.

preempted 16 1 An advisory flag indicating whether the virtual hart which
registered this structure is running or not. A non-zero value
MAY be written by the SBI implementation if the virtual hart

has been preempted (i.e. while the steal field is increasing),
while a zero value MUST be written before the virtual hart
starts to run again.

This preempted field can, for example, be used by the supervisor-
mode software to check if a lock holder has been preempted, and,
in that case, disable optimistic spinning.

pad 17 47 Pad with zeros to a 64 byte boundary.

shiret.value is set to zero and the possible error codes returned in sbiret.error are shown in
Table 77 below.

Table 77. STA Set Steal-time Shared Memory Address Errors

Error code Description

SBI_SUCCESS The steal-time shared memory physical base address was set or cleared successfully.
SBI_ERR_INVALID PARAM The flags parameter is not zero or the shmem_phys_10 is not 64-byte aligned.
SBI_ERR_INVALID ADDRESS The shared memory pointed to by the shmem_phys_10 and shmem_phys_hi

parameters is not writable or does not satisfy other requirements of Section 3.2.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

16.2. Function Listing

Table 78. STA Function List

Function Name SBI Version FID EID

sbi_steal time set shmem 2.0 0 0x535441

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.1. Software Event Identification | Page 66
Chapter 17. Supervisor Software Events Extension (EID #0x535345 "SSE")

The SBI Supervisor Software Events (SSE) extension provides a mechanism to inject software events
from an SBI implementation to supervisor software such that it preempts all other traps and
interrupts. The supervisor software will receive software events only on harts which are ready to
receive them. A software event is delivered only after supervisor software has registered an event
handler and enabled the software event.

The software events can be of two types: local or global. A local software event is local to a hart and can
be handled only on that hart whereas a global software event is a system event and can be handled by
any hart.

17.1. Software Event Ildentification

Each software event is identified by a unique 32-bit unsigned integer called event_id. The
event_id space is divided into multiple 16-bit ranges where each 16-bit range is encoded as follows:

event_id[14:14] Platform (0: Standard event, 1: Platform specific
event)

event_id[15:15]

Global (O: Local event, 1: Global event)

The Table 79 below show the complete event_id space along with standard events based on the
above encoding.
Table 79. SSE Event ID Space

Software Event ID Description

Range 0x00000000 - 0xO000ffff

0x00000000 Local RAS event

0x00000001 - 0x00003fff Local events reserved for future use
0x00004000 - 0x00007fff Platform specific local events
0x00008000 Global RAS event

0x00008001 - 0xO000bfff Global events reserved for future use
0x0000c000 - 0xO00Offff Platform specific global events

Range 0x00010000 - 0x0001ffff

0x00010000 Local PMU event

0x00010001 - 0x00013fff Local events reserved for future use
0x00014000 - 0x00017fff Platform specific local events
0x00018000 - 0x0001bfff Global events reserved for future use
0x0001c000 - 0x0001ffff Platform specific global events

Range 0x00020000 - 0x0002ffff

0x00020000 - 0x00023fff Local events reserved for future use
0x00024000 - 0x00027fff Platform specific local events
0x00028000 - 0x0002bfff Global events reserved for future use
0x0002c000 - 0x0002ffff Platform specific global events

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.2. Software Event States | Page 67

Software Event ID Description

Range Oxffff0000 - Oxffffffff

Oxffff0000 Software injected local event
Oxffff0001 - Oxffff3fff Local events reserved for future use
OxffffA000 - Oxffffrtff Platform specific local events
Oxffff8000 Software injected global event
Oxffff8001 - Oxffffbfff Global events reserved for future use
OxffffcO00 - Oxffffffff Platform specific global events

17.2. Software Event States
At any point in time, a software event can be in one of the following states:

1. UNUSED - Software event is not used by supervisor software
2. REGISTERED - Supervisor software has provided an event handler for the software event
3. ENABLED - Supervisor software is ready to handle the software event

4. RUNNING - Supervisor software is handling the software event

A global software event MUST be registered and enabled only once by any hart. By default, a global
software event will be routed to any hart which is ready to receive software events but supervisor
software can provide a preferred hart to handle this software event. The state of a global software event
MUST be common to all harts.

The preferred hart assigned to a global software event by the supervisor software is only a
o hint about supervisor software’s preference. The SBI implementation may choose a
different hart for handling the global software event to avoid an inter-processor interrupt.

A local software event MUST be registered and enabled by all harts which want to handle this event. A
local event is delivered to a hart only when the hart is ready to receive software events and the local
event is registered and enabled on that hart. The state of a local software event MUST be tracked
separately for each hart.

If a software event in RUNNING state is signalled by the event source again, the software
o event will be taken only after the running event handler completes, provided that
supervisor software doesn’t disable the software event upon completion.

The Figure 4 below shows the state transitions of a software event.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.3. Software Event Priority | Page 68

—Pp UNUSED
sbi_sse _unregister() sbi_sse register()
—3 ‘
sbi_sse_disable() sbi_sse_enable()
— <
—P
Event signalled by
sbi_ sse _complete() the event source
— <
RUNNING

ONESHOT

Figure 4. SBI SSE State Machine

17.3. Software Event Priority

Each software event has an associated priority (referred as event_priority) which can be used by
an SBI implementation to select a software event for injection when multiple software events are
pending on the same hart.

The priority of a software event is a 32-bit unsigned integer where lower value means higher priority.
By default, all software events have event priority as zero.

If two or more software events have same priority on a given hart then the SBI implementation must
use event_1id for tie-breaking where lower event_1id has higher priority.

A higher priority software event, unless disabled by supervisor software, always preempts a lower
priority software event in RUNNING state on the same hart. Once a higher priority software event is

completed, the previous lower priority software event will be resumed.
17.4. Software Event Attributes

A software event can have various XLEN bits wide attributes associated to it where each event attribute

is identified by a unique 32-bit unsigned integer called attr_id. A software event attribute can have
a Read-Only or Read-Write access permissions. The Table 80 below provides a list event attributes.

Table 80. SSE Event Attributes

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Attribute Name

STATUS

PRIORITY

CONFIG

PREFERRED _HART

ENTRY_PC

Attribute ID Access
(attr_id) (RO /RW)
0x00000000 RO
0x00000001 RW
0x00000002 RW
0x00000003 RW (global)
RO (local)
0x00000004 RO

17.4. Software Event Attributes | Page 69

Description

Status of the software event which is encoded as
follows:

bit[1:0]: Event state with following possible
values: O = UNUSED, 1 = REGISTERED, 2 =
ENABLED, and 3 = RUNNING

bit[2:2]: Event pending status (1 = Pending
and O = Not Pending). This flag is set by the
event source and it is cleared when the software

event is moved to RUNNING state.

bit[3:3]: Event injection using the
shi_sse_inject call (1 = Allowed and O = Not
allowed)

bit[XLEN-1:4]: Reserved for future use and
should be zero

The reset value of this attribute is zero.

Software event priority where only lower 32-bits
of the value are used and other bits are always set
to zero. This attribute can be updated only when
the software event is in UNUSED or REGISTERED
state.

The reset value of this attribute is zero.

Additional configuration of the software event.
This attribute can be updated only when the
software event is in UNUSED or REGISTERED
state. The encoding of this event attribute is as
follows:

bit[0:0]: Disable software event upon
shi_sse_complete call (one-shot)

bit[XLEN-1:1]: Reserved for future use and
should be zero

The reset value of this attribute is zero.

Hart id of the preferred hart that should handle
the global software event. The value of this
attribute must always be valid hart id for both
local and global software events. This attribute is
read-only for local software events and for global
software events it can be updated only when the
software event is in UNUSED or REGISTERED
state.

The reset value of this attribute is SBI
implementation specific.

Entry program counter value for handling the
software event in supervisor software. The value
of this event attribute MUST be 2-bytes aligned.

The reset value of this attribute is zero.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.5. Software Event Injection | Page 70

Attribute Name Attribute ID
(attr_id)

ENTRY_ ARG 0x00000005
INTERRUPTED SEPC 0x00000006
INTERRUPTED _FLAGS 0x00000007
INTERRUPTED A6 0x00000008
INTERRUPTED _A7 0x00000009
RESERVED > 0x00000009

17.5. Software Event Injection

Access
(RO / RW)

RO

RW

RwW

RW

RW

Description

Entry argument (or parameter) value for
handling the software event in supervisor
software. This attribute value is passed to the

supervisor software via A7 GPR.

The reset value of this attribute is zero.

Interrupted sepc CSR value which is saved
before handling the software event in supervisor
software. This attribute can be updated only
when the software event is in RUNNING state. For
global events, only the hart executing the event
handler can modify it.

The reset value of this attribute is zero.

Interrupted flags which are saved before
handling the software event in supervisor
software. This attribute can be updated only
when the software event is in RUNNING state. For
global events, only the hart executing the event
handler can modify it. The encoding of this event
attribute is as follows:

bit[0:0]: interrupted sstatus.SPP CSR bit
value

bit[1:1]:interrupted sstatus.SPIE CSR bit
value

bit[2:2]:interrupted hstatus.SPV CSR bit
value

bit[3:3]: interrupted hstatus.SPVP CSR bit
value

bit[XLEN-1:4]: Reserved for future use and
should be zero

Interrupted A6 GPR value which is saved before
handling the software event in supervisor
software. This attribute can be updated only
when the software event is in RUNNING state. For
global events, only the hart executing the event
handler can modify it.

The reset value of this attribute is zero.

Interrupted A7 GPR value which is saved before
handling the software event in supervisor
software. This attribute can be updated only
when the software event is in RUNNING state. For
global events, only the hart executing the event
handler can modify it.

The reset value of this attribute is zero.

Reserved for future use

To inject a software event on a hart, the SBI implementation must do the following:

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.6. Software Event Completion | Page 71

1. Save interrupted state of supervisor mode
a. Set INTERRUPTED_FLAGS event attribute as follows:
.. INTERRUPTED_FLAGS[0:0] = interrupted sstatus.SPP CSR bit value
ii. INTERRUPTED_FLAGS[1:1] = interrupted sstatus.SPIE CSR bit value

iii. if H-extension is available to supervisor mode:
A. Set INTERRUPTED_FLAGS[2:2] = interrupted hstatus.SPV CSR bit value
B. Set INTERRUPTED_FLAGS[3:3] = interrupted hstatus.SPVP CSR bit value

iv. else
A. Set INTERRUPTED_FLAGS[3:2] = zero
V. Set INTERRUPTED_FLAGS[XLEN-1:4] = zero
b. Set INTERRUPTED_SEPC event attribute = interrupted sepc CSR
C. Set INTERRUPTED_Ab event attribute = interrupted A6 GPR value
d. Set INTERRUPTED_A7 event attribute = interrupted A7 GPR value

2. Redirect execution to supervisor event handler
a. Set A6 GPR = Current Hart id
b. Set A7 GPR = ENTRY_ARG event attribute value
C. Set sepc = Interrupted program counter value
d. Set sstatus.SPP CSR bit = interrupted privilege mode
€. Set sstatus.SPIE CSRbit=sstatus.SIE CSR bitvalue
f. Set sstatus.SIE CSR bit = zero

g. if H-extension is available to supervisor mode:
L Sethstatus.SPV CSR bit = interrupted virtualization state
i if hstatus.SPV CSR bit == 1:
A. Sethstatus.SPVP CSR bit = sstatus.SPP CSR bit value

h. Set virtualization state = OFF
i. Set privilege mode = S-mode

J- Set program counter = ENTRY_PC event attribute value

17.6. Software Event Completion

After handling the software event on a hart, the supervisor software must notify the SBI

implementation about completion of event handling using sbi_sse_complete call. The SBI
implementation must do the following to resume the interrupted state for a completed event:

L Set program counter = sepc CSR value

2. Set privilege mode = sstatus.SPP CSR bit value

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.7. Function: Read software event attributes (FID #0) | Page 72

3. if H-extension is available to supervisor mode:
a. Set virtualization state = hstatus.SPV CSR bit value
b. Set hstatus.SPV CSR bit = INTERRUPTED_FLAGS[2:2] event attribute value
c. Sethstatus.SPVP CSR bit = INTERRUPTED_FLAGS[3:3] event attribute value
4. Set sstatus.SIE CSRbit = sstatus.SPIE CSR bit
5. Set sstatus.SPIE CSRbit= INTERRUPTED_FLAGS[1:1] event attribute value
Set sstatus.SPP CSR bit = INTERRUPTED_FLAGS[0:0] event attribute value
Set A7 GPR = INTERRUPTED_A7 event attribute value
Set A6 GPR = INTERRUPTED_Ab event attribute value

© ®©® N

Set sepc = INTERRUPTED_SEPC event attribute value

If the supervisor software wishes to resume from a different location, it can update the event attributes
of the software event before calling shi_sse_complete.

17.7. Function: Read software event attributes (FID #0)

struct sbhiret sbi_sse_read_attrs(uint32_t event_id,
uint32_t base_attr_id, uint32_t
attr_count,
unsigned long output_phys_1lo,
unsigned long output_phys_hi)

Read a range of event attribute values from a software event.

The event_id parameter specifies the software event whereas base_attr_id and attr_count
parameters specifies the range of event attribute ids.

The event attribute values are written to a output shared memory which is specified by the
output_phys_1lo and output_phys_hi parameters where:

® The output_phys_1lo paramter MUST be XLEN / 8 bytes aligned
® The size of output shared memory is assumed to be (XLEN / 8) * attr_count

® The value of event attribute with id base_attr_id + i should be written at offset (XLEN /
8) * (base_attr_id + i)

In case of an error, the possible error codes are shown in the Table 81 below:

Table 81. SSE Event Attributes Read Errors

Error code Description
SBI_SUCCESS Event attribute values read successfully.
SBI_ERR_INVALID PARAM event_idisinvalid orattr_count is zero.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.8. Function: Write software event attributes (FID #1) | Page 73

Error code Description

SBI_ERR_BAD_RANGE One of the event attribute in the range specified by base_attr_id
and attr_count does not exist.

SBI_ERR_INVALID_ADDRESS The shared memory pointed to by the output_phys_lo and

output_phys_hi parameters does not satisfy the requirements
described in Section 3.2.

SBI_ERR_FAILED The read failed for unspecified or unknown other reasons.

17.8. Function: Write software event attributes (FID #1)

struct sbhiret sbi_sse_write_attrs(uint32_t event_id,
uint32_t base_attr_id, uint32_t
attr_count,
unsigned long input_phys_1lo,
unsigned long input_phys_hi)

Write a range of event attribute values to a software event.

The event_id parameter specifies the software event whereas base_attr_id and attr_count
parameters specifies the range of event attribute ids.

The event attribute values are read from a input shared memory which is specified by the
input_phys_1lo and input_phys_hi parameters where:

® The input_phys_1l0o paramter MUST be XLEN / 8 bytes aligned
® The size of input shared memory is assumed to be (XLEN / 8) * attr_count

® The value of event attribute with id base_attr_id + i should be read from offset (XLEN /
8) * (base_attr_id + i)

For local events, the event attributes are updated only for the calling hart. For global events, the event
attributes are updated for all the harts.

The possible error codes returned in shiret.error are shown in Table 82 below.

Table 82. SSE Event Attributes Write Errors

Error code Description

SBI_SUCCESS Event attribute values written successfully.

SBI_ERR_INVALID PARAM event_idisinvalid orattr_count is zero.
SBI_ERR_BAD_RANGE One of the event attribute in the range specified by base_attr_id

and attr_count does not exist or is read-only.

SBI_ERR_INVALID ADDRESS The shared memory pointed to by the input_phys_1o and

input_phys_hi parameters does not satisfy the requirements
described in Section 3.2.

SBI_ERR_FAILED The write failed for unspecified or unknown other reasons.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.10. Function: Unregister a software event (FID #3) | Page 74

17.9. Function: Register a software event (FID #2)

struct sbiret sbi_sse_register(uint32_t event_id,
unsigned long handler_entry_pc,
unsigned long handler_entry_arg)

Register an event handler for the software event.

The event_id parameter specifies the event ID for which an event handler is being registered. The
handler_entry_pc parameter MUST be 2-bytes aligned and specifies the ENTRY_PC event
attribute of the software event whereas the handler_entry_arg parameter specifies the
ENTRY_ARG event attribute of the software event.

For local events, the event is registered only for the calling hart. For global events, the event is
registered for all the harts.

The event MUST be in UNUSED state otherwise this function will fail.

o It is advisable to use different values for handler_entry_anrg for different events

because a higher priority event can preempt a lower priority event.

Upon success, the event state moves from UNUSED to REGISTERED. In case of an error, possible error
codes are listed in Table 83 below.

Table 83. SSE Event Register Errors

Error code Description

SBI_SUCCESS Event handler is registered successfully.
SBI_ERR_INVALID_STATE The event is not in UNUSED state.

SBI_ERR_INVALID_ _PARAM event_id isinvalid or handler_entry_pc is not 2-bytes aligned.

17.10. Function: Unregister a software event (FID #3)

struct sbiret sbi_sse_unregister(uint32_t event_id)

Unregister the event handler for given event_id.

For local events, the event is unregistered only for the calling hart. For global events, the event is
unregistered for all the harts.

The event MUST be in REGISTERED state otherwise this function will fail.

Upon success, the event state moves from REGISTERED to UNUSED. In case of an error, possible error
codes are listed in Table 84 below.

Table 84. SSE Event Unregister Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.11. Function: Enable a software event (FID #4) | Page 75

Error code Description

SBI_SUCCESS Event handler is unregistered successfully.
SBI_ERR_INVALID _STATE Eventis notin REGISTERED state.
SBI_ERR_INVALID _PARAM event_id is invalid.

17.11. Function: Enable a software event (FID #4)

struct shiret shi_sse_enable(uint32_t event_id)

Enable the software event specified by the event_id parameter.

For local events, the event is enabled only for the calling hart. For global events, the event is enabled
for all the harts.

The event MUST be in REGISTERED state otherwise this function will fail.

Upon success, the event state moves from REGISTERED to ENABLED. In case of an error, possible
error codes are listed in Table 85 below.

Table 85. SSE Event Enable Errors

Error code Description

SBI_SUCCESS Event is successfully enabled.
SBI_ERR_INVALID _PARAM event_id is not valid.
SBI_ERR_INVALID STATE The event is not in REGISTERED state.

17.12. Function: Disable a software event (FID #5)

struct sbiret sbi_sse_disable(uint32_t event_id)

Disable the software event specified by the event_id parameter.

For local events, the event is disabled only for the calling hart. For global events, the event is disabled
for all the harts.

The event MUST be in ENABLED state otherwise this function will fail.

Upon success, the event state moves from ENABLED to REGISTERED. In case of an error, possible
error codes are listed in Table 86 below.

Table 86. SSE Event Disable Errors

Error code Description

SBI_SUCCESS Event is successfully disabled.
SBI_ERR_INVALID PARAM event_id is not valid.
SBI_ERR_INVALID_STATE Event is not in ENABLED state.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.13. Function: Complete software event handling (FID #6) | Page 76

17.13. Function: Complete software event handling (FID #6)

struct sbiret sbi_sse_complete(void)

Complete the supervisor event handling for the highest priority event in RUNNING state on the calling
hart.

If there were no events in RUNNING state on the calling hart then this function does nothing and

returns SBI_SUCCESS otherwise it moves the highest priority event in RUNNING state to ENABLED
state and resumes interrupted supervisor state as decribed in Section 17.6.

17.14. Function: Inject a software event (FID #7)

struct sbiret sbi_sse_inject(uint32_t event_id, unsigned long hart_id)

The supervisor software can inject a software event with the help of this function. The event_id
paramater refers to the event to be injected.

For local events, the hart_id parameter refers to the hart on which the event is to be injected. For
global events, the hart_id parameter is ignored.

An event can only be injected if it is allowed by the event attribute as described in Table 80.
In case of an error, possible error codes are listed in Table 87 below.

Table 87. SSE Event Inject Errors

Error code Description

SBI_SUCCESS Event is successfully injected.

SBI_ERR_INVALID PARAM event_idorhart_id isinvalid.

SBI_ERR_FAILED The injection failed for unspecified or unknown other reasons.

17.15. Function: Unmask software events on a hart (FID #8)

struct shiret sbi_sse_hart_unmask(void)

Start receiving (or unmask) software events on the calling hart. In other words, the calling hart is ready
to receive software events from the SBI implementation.

The software events are masked initially on all harts so the supervisor software must explicitly
unmask software events on relevant harts at boot-time.

In case of an error, possible error codes are listed in Table 88 below.

Table 88. SSE Hart Unmask Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V International

17.16. Function: Mask software events on a hart (FID #9) | Page 77

Error code Description

SBI_SUCCESS Software events unmasked successfully on the calling hart.
SBI_ERR_ALREADY_ STARTED Software events were already unmasked on the calling hart.
SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

17.16. Function: Mask software events on a hart (FID #9)

struct sbiret sbi_sse_hart_mask(void)

Stop receiving (or mask) software events on the calling hart. In other words, the calling hart is not
ready to receive software events from the SBI implementation.

In case of an error, possible error codes are listed in Table 89 below.

Table 89. SSE Hart Mask Errors

Error code Description

SBI_SUCCESS Software events masked successfully on the calling hart.
SBI_ERR_ALREADY STOPPED Software events were already masked on the calling hart.
SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

17.17. Function Listing

Table 90. SSE Function List

Function Name SBI Version FID EID

sbi_sse read attrs 3.0 0 0x535345
sbi_sse write attrs 3.0 1 0x535345
sbi_sse_register 3.0 2 0x535345
sbi_sse_unregister 3.0 3 0x535345
sbi_sse enable 3.0 4 0x535345
sbi_sse disable 3.0 5 0x535345
sbi_sse_complete 3.0 6 0x535345
sbi_sse_inject 3.0 7 0x535345
sbi_sse hart unmask 3.0 8 0x535345
sbi_sse hart mask 3.0 9 0x535345

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 18. SBI Firmware Features Extension (EID #0x46574654 "FWFT") | Page 78
Chapter 18. SBI Firmware Features Extension (EID #0x46574654 "FWFT")

The Firmware Features extension is meant to control the behavior of specific firmware features. Table
91 defines 32-bit identifiers for the features which supervisor-mode software may request to set or get.

Table 91. FWFT Feature Types

Value Name Description

0x00000000 MISALIGNED _EXC_DELEG Control misaligned access exception
delegation to supervisor-mode if
medelegq is present.

0x00000001 LANDING _PAD Control landing pad support for
supervisor-mode.

0x00000002 SHADOW _STACK Control shadow stack support for
supervisor-mode.

0x00000003 DOUBLE_TRAP Control double trap support for
supervisor-mode.

0x00000004 PTE _AD HW _UPDATING Control hardware updating of PTE
A/D bits for supervisor-mode.

0x00000005 POINTER _MASKING_PMLEN Control the pointer masking tag
length for supervisor-mode.

0x00000006 - Local feature types reserved for

Ox3fffffff future use.

0x40000000 - Platform specific local feature types.

OxTfffffff

0x80000000 - Global feature types reserved for

Oxbfffffff future use.

0xc0000000 - Platform specific global feature types.

Oxffffffff

These features have some attributes that define their behavior and are described in Table 92. The
attribute values are defined for each feature in Table 93.

Table 92. FWFT Feature Attributes

Attribute Description

Scope Defines if a feature is local (per-hart) or global. Global features only need to be
enabled/disabled by a single hart, whereas local features need to be enabled/disabled
by each hart. The status and flags of local features can be different from one hart to

another.
Reset value Reset value of the feature. Might be implementation defined.
Values Per feature values that can be set.

During non-retentive suspend, feature values are retained and restored by the SBI when resuming
operations. Upon hart reset, local feature values are not retained and reset to their default reset values
according to the feature description. Upon system reset, global and local feature values are reset.

Table 93. FWFT Feature Attribute Values

Feature Name Reset Scope Values
MISALIGNED_EXC_DELEG Implementatio Local 0 Disable misaligned exception
n-defined delegation.
1 Enable misaligned exception
delegation.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

18.1. Function: Firmware Features Set (FID #0) | Page 79

Feature Name Reset Scope Values
LANDING_PAD 0 Local 0 Disable landing pad for supervisor-
mode.
1 Enable landing pad for supervisor-
mode.
SHADOW _STACK 0 Local 0 Disable shadow-stack for supervisor-
mode.
1 Enable shadow-stack for supervisor-
mode.
DOUBLE_TRAP 0 Local 0 Disable double trap for supervisor-
mode.
1 Enable double trap for supervisor-
mode.
PTE_AD_HW_UPDATING 0 Local 0 Disable hardware updating of PTE
A/D bits for supervisor-mode.
1 Enable hardware updating of PTE
A/D bits for supervisor-mode.
POINTER_MASKING_PMLEN 0 Local 0 Disable pointer masking for
supervisor-mode.
N Enable pointer masking for

supervisor-mode with PMLEN >= N.

Acall to sbi_fwft_get() returns
the actual value of PMLEN.

18.1. Function: Firmware Features Set (FID #0)

struct sbiret sbi_fwft_set(unsigned long feature,
unsigned long value,
unsigned long flags)

A successful return from shi_fwft_set() results in the requested firmware feature to be set

according to the va'lue and flags parameters for which per feature supported values are described
in Table 92 and flags in Table 94.

Table 94. FWFT Firmware Features Set Flags

Name Encoding Description
LOCK BIT[O] If provided, once set, the feature value can no longer be modified
until:

- hart reset for feature with local scope
- system reset for feature with global scope

BIT[XLEN-1:1] Reserved for future use.

In case of failure, feature value is not modified and the possible error codes returned in
sbiret.error are shown in Table 95 below.

Table 95. FWFT Firmware Features Set Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V International

18.2. Function: Firmware Features Get (FID #1) | Page 80

Error code

SBI_SUCCESS

SBI_ERR_NOT_SUPPORTED

SBI_ERR_INVALID _PARAM

SBI_ERR_DENIED

SBI_ERR_FAILED

Description
feature was set successfully.

feature is not reserved and is implemented, but the platform does not support it
due to one or more missing dependencies.

Provided value or flags parameter is invalid.

feature set operation failed because either:
- it was denied by the SBI implementation

- feature islocked

- feature is reserved or is platform-specific and unimplemented

The set operation failed for unspecified or unknown other reasons.

The rationale for an SBI implementation to return SBI_ERR_DENIED is for instance to

Guest/VM and deny any changes to that delegation state from the Guest/VM. If

E allow some hypervisors to simply passthrough the misaligned delegation state to the

authorized, an SBI call would be required at each Guest/VM switch if delegation choices
are different between Host and Guest/VM.

18.2. Function: Firmware Features Get (FID #]1)

struct sbiret sbi_fwft_get(unsigned long feature)

A successful return from shi_fwft_get() results in the firmware feature configuration value to be
returned in sbiret.value. Possible shiret.value values are described in Table 92 for each

feature ID.

In case of failure, the content of shiret.value is zero and the possible error codes returned in
sbiret.error are shownin Table 96.

Error code
SBI_SUCCESS
SBI_ERR_NOT_SUPPORTED

SBI_ERR_DENIED

SBI_ERR_FAILED

18.3. Function Listing

Function Name
sbi_fwft set
sbi_fwft_get

Table 96. FWFT Firmware Features Get Errors

Description

Feature status was retrieved successfully.

feature is not reserved and is implemented, but the platform does not support it
due to one or more missing dependencies.

feature is reserved or is platform-specific and unimplemented.

The get operation failed for unspecified or unknown other reasons.

Table 97. FWFT Function List

SBI Version FID EID
3.0 0] 0x46574654
3.0 1 0x46574654

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.1. Function: Get number of triggers (FID #0) | Page 81
Chapter 19. Debug Triggers Extension (EID #0x44425452 "DBTR")

The RISC-V Sdtrig extension [2] allows machine-mode software to directly configure debug triggers
which in-turn allows native (or hosted) debugging in machine-mode without any external debugger.
Unfortunately, the debug triggers are only accessible to the machine-mode.

The SBI debug trigger extension defines a SBI based abstraction to provide native debugging for
supervisor-mode software such that it is:

1. Suitable for the rich operating systems and hypervisors running in supervisor-mode.

2. Allows Guest (VS-mode) and Hypervisor (HS-mode) to share debug triggers on a hart.

All harts on a RISC-V platform have a fixed number of debug triggers which is referred to as
trig_max in this SBI extension. Each debug trigger is assigned a logical index called trig_idx by
the SBI implementation where -1 < trig_idx < trig_max.

o The trig_max may vary across harts on a platform with asymmetric harts.

The configuration of each debug trigger is expressed by three entities trig_tdatal, trig_tdata2,

and trig_tdata3 which are encoded in the same way as the tdatal, tdata2, and tdata3 CSRs
defined by the RISC-V Sdtrig extension [2] but with the following additional constraints:

L The trig_tdatal.dmode bit must always be zero.

2. The trig_tdatal.m bit must always be zero.

The SBI implementation MUST also maintain an additional software state for each debug trigger
called trig_state which is encoded as shown in Table 98 below.

Table 98. Debug Trigger State Fields

Field Name Bits Description

hw_trig_idx trig_state[XLEN-1:8] hardware (or physical) index of the debug rigger. This field must
be ignored when trig_state.have_hw_trig ==

reserved trig_state[7:6] Reserved for future use

have_hw_ trig trig_state[5:5] When set, the hardware (or physical) debug trigger details are
available.

\& trig_statel[4:4] Saved copy of the trig_tdatal.vs bit.

vu trig_state[3:3] Saved copy of the trig_tdatal.vu bit.

s trig_state[2:2] Saved copy of the trig_tdatal.s bit.

u trig_state[1:1] Saved copy of the trig_tdatal.u bit.

mapped trig_state[0:0] When set, the trigger has been mapped to some HW debug
trigger.

19.1. Function: Get number of triggers (FID #0)

struct sbiret sbi_debug_num_triggers(unsigned long trig_tdatal)

Get the number of debug triggers on the calling hart which can support the trigger configuration

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.2. Function: Set trigger shared memory (FID #1) | Page 82
specified by trig_tdatal parameter.

This function always returns SBI_SUCCESS in sbiret.error. It will return trig_max in
sbiret.value when trig_tdatal == 0 otherwise it will return the number of matching debug
triggers in shiret.value.

19.2. Function: Set trigger shared memory (FID #1)

struct shiret sbi_debug_set_shmem(unsigned long shmem_phys_1lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set and enable the shared memory for debug trigger configuration on the calling hart.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then
shmem_phys_10 specifies the lower XLEN bits and shmem_phys_h1 specifies the upper XLEN bits
of the shared memory physical base address. The shmem_phys_1o MUST be (XLEN / 8) bytes
aligned and the size of shared memory is assumed to be trig_max * (XLEN / 2) bytes.

If both shmem_phys_1l0 and shmem_phys_h1i parameters are all-ones bitwise then shared memory
for debug trigger configuration is disabled.

The flags parameter is reserved for future use and MUST be zero.

The possible error codes returned in sbiret.error are shown in Table 99.

Table 99. Debug Triggers Set Shared Memory Errors

Error code Description
SBI_SUCCESS Shared memory was set or cleared successfully.
SBI_ERR_INVALID _PARAM The flags parameter is not zero or the shmem_phys_10 parameter is not (XLEN

/ 8) bytes aligned.

SBI_ERR_INVALID ADDRESS The shared memory pointed to by the shmem_phys_10 and shmem_phys_hi
parameters does not satisfy the requirements described in Section 3.2.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

19.3. Function: Read triggers (FID #2)

struct shiret sbi_debug_read_triggers(unsigned long trig_idx_base,
unsigned long trig_count)

Read the debug trigger state and configuration into shared memory for a range of debug triggers
specified by the trig_idx_base and trig_count parameters on the calling hart.

For each debug trigger with index trig_idx_base + 1 where -1 < 1 < trig_count, the
debug trigger state and configuration consisting of four XLEN-bit words are written in little-endian

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.4. Function: Install triggers (FID #3) | Page 83

formatat offset = i * (XLEN / 2) of the shared memory as follows:

word[0] = “trig_state’ written by the SBI implementation
word[1] = “trig_tdatal® written by the SBI implementation
word[2] = “trig_tdata2 written by the SBI implementation
word[3] = “trig_tdata3" written by the SBI implementation

The possible error codes returned in sbiret.error are shown in Table 100.

Table 100. Debug Triggers Read Errors

Error code Description

SBI_SUCCESS State and configuration of triggers read successfully.

SBI_ERR_NO_SHMEM Shared memory for debug triggers is disabled.

SBI_ERR_BAD_RANGE Either trig_idx_base >= trig_maxortrig_idx_base + trig_count

>= trig_max

19.4. Function: Install triggers (FID #3)

struct sbiret sbi_debug_install_triggers(unsigned long trig_count)

Install debug triggers based on an array of trigger configurations in the shared memory of the calling

hart. The trig_idx assigned to each installed trigger configuration is written back in the shared
memory.

The trig_count parameter represents the number of trigger configuration entries in the shared
memory at offset 0X0.

The i’'th trigger configuration at offset = i * (XLEN / 2) in the shared memory consists of
four consecutive XLEN-bit words in little-endian format which are organized as follows:

word[0] = “trig_idx" written back by the SBI implementation
word[1] = “trig_tdatal® read by the SBI implementation
word[2] = “trig_tdata2 read by the SBI implementation
word[3] = “trig_tdata3" read by the SBI implementation

The SBI implementation MUST consider trigger configurations in the increasing order of the array
index and starting with array index 0. To install a debug trigger for the trigger configuration at array
index 1 in the shared memory, the SBI implementation MUST do the following:

1. Map an unused HW debug trigger which matches the trigger configuration to an an unused
trig_idx.

2. Save a copy of the trig_tdatal.vs, trig_tdatal.vu, trig_tdatal.s, and
trig_tdata.ubitsin trig_state.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.5. Function: Update triggers (FID #4) | Page 84

3. Update the tdatal, tdata2, and tdata3 CSRs of the HW debug trigger.
4. Write trig_idx atoffset = i * (XLEN / 2) in the shared memory.

Additionally for each trigger configuration chain in the shared memory, the SBI implementation

MUST assign contiguous trig_idx values and contiguous HW debug triggers when installing the
trigger configuration chain.

The last trigger configuration in the shared memory MUST not have trig_tdatal.chain == 1

for trig_tdatal.type = 2 or 6 to prevent incomplete trigger configuration chain in the
shared memory.

The sbiret.value is set to zero upon success or if shared memory is disabled whereas
sbhiret.value is set to the array index 1 of the failing trigger configuration upon other failures.

The possible error codes returned in sbiret.error are shown in Table 101.

Table 101. Debug Triggers Install Errors

Error code Description

SBI_SUCCESS Triggers installed successfully.

SBI_ERR_NO_SHMEM Shared memory for debug triggers is disabled.

SBI_ERR_BAD_RANGE trig_count >= trig_max

SBI_ERR_INVALID PARAM One of the trigger configuration words trig_tdatal, trig_tdata2, or
trig_tdata3d has an invalid value.

SBI_ERR_FAILED Failed to assign trig_idx or HW debug trigger for one of the trigger configurations.

SBI_ERR_NOT_SUPPORTED One of the trigger configuration can’t be programmed due to unimplemented

optional bits in tdatal, tdata2, or tdata3 CSRs.

19.5. Function: Update triggers (FID #4)

struct sbiret sbi_debug_update_triggers(unsigned long trig_count)

Update already installed debug triggers based on a trigger configuration array in the shared memory
of the calling hart.

The trig_count parameter represents the number of trigger configuration entries in the shared
memory at offset 0X0.

The i’'th trigger configuration at offset = i * (XLEN / 2) in the shared memory consists of
four consecutive XLEN-bit words in little-endian format as follows:

word[0] = “trig_idx" read by the SBI implementation

word[1] = “trig_tdatal’ read by the SBI implementation
word[2] = “trig_tdata2’ read by the SBI implementation
word[3] = “trig_tdata3" read by the SBI implementation

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.6. Function: Uninstall a set of triggers (FID #5) | Page 85

The SBI implementation MUST consider trigger configurations in the increasing order of array index
and starting with array index 0. To update a debug trigger based on trigger configuration at array
index 1 in the shared memory, the SBI implementation MUST do the following:

1. Check and fail if any of the following constraints are not satisfied:
a trig_idxX represents logical index of a installed debug trigger
b. trig_tdatal.type matches with original installed debug trigger
C. trig_tdatal.chain matches with original installed debug trigger

2. Save a copy of the trig_tdatal.vs, trig_tdatal.vu, trig_tdatal.s, and
trig_tdata.ubitsin trig_state.

3. Update the tdatal, tdata2, and tdata3 CSRs of the HW debug trigger.

The sbiret.value is set to zero upon success or if shared memory is disabled whereas
sbiret.value is set to the array index 1 of the failing trigger configuration upon other failures.

The possible error codes returned in shiret.error are shown in Table 102.

Table 102. Debug Triggers Update Errors

Error code Description

SBI_SUCCESS Triggers updated successfully.

SBI_ERR_NO_SHMEM Shared memory for debug triggers is disabled.

SBI_ERR_BAD_RANGE trig_count >= trig_max

SBI_ERR_INVALID PARAM One of the trigger configuration in the shared memory has an invalid of trig_idx

(le. trig_idx >= trig_max), trig_tdatal, trig_tdata2, or
trig_tdatal.

SBI_ERR_FAILED One of the trigger configurations has valid trig_idx but the corresponding debug
trigger is not mapped to any HW debug trigger.

SBI_ERR_NOT_SUPPORTED One of the trigger configuration can’t be programmed due to unimplemented
optional bits in tdatal, tdata2, or tdata3 CSRs.

19.6. Function: Uninstall a set of triggers (FID #5)

struct sbiret sbi_debug_uninstall_triggers(unsigned long trig_idx_base,
unsigned long trig_idx_mask)

Uninstall a set of debug triggers specified by the trig_idx_base and trig_idx_mask parameters
on the calling hart.

For each debug trigger in the specified set of debug triggers, the SBI implementation MUST:
L Clear the tdatal, tdata2, and tdata3 CSRs of the mapped HW debug trigger.

2. Clear the trig_state of the debug trigger.

3. Unmap and free the HW debug trigger and corresponding trig_idx for re-use in the future
trigger installations.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.7. Function: Enable a set of triggers (FID #6) | Page 86

The possible error codes returned in sbhiret.error are shown in Table 103.

Table 103. Debug Triggers Uninstall Errors

Error code Description
SBI_SUCCESS Triggers uninstalled successfully.
SBI_ERR_INVALID_PARAM One of the debug trigger with index trig_idx in the specified set of debug triggers

either not mapped to any HW debug trigger OR has trig_idx >= trig_max.

19.7. Function: Enable a set of triggers (FID #6)

struct shiret sbi_debug_enable_triggers(unsigned long trig_idx_base,
unsigned long trig_idx_mask)

Enable a set of debug triggers specified by the trig_idx_base and trig_idx_mask parameters
on the calling hart.

To enable a debug trigger in the specified set of debug triggers, the SBI implementation MUST restore
the vs, vu, s, and U bits of the mapped HW debug trigger from their saved copy in trig_state.

The possible error codes returned in sbiret.error are shown in Table 104.

Table 104. Debug Triggers Enable Errors

Error code Description
SBI_SUCCESS Triggers enabled successfully.
SBI_ERR_INVALID PARAM One of the debug trigger with index trig_idx in the specified set of debug triggers

either not mapped to any HW debug trigger OR has trig_idx >= trig_max.

19.8. Function: Disable a set of triggers (FID #7)

struct sbiret sbi_debug_disable_triggers(unsigned long trig_idx_base,
unsigned long trig_idx_mask)

Disable a set of debug triggers specified by the trig_idx_base and trig_idx_mask parameters
on the calling hart.

To disable a debug trigger in the specified set of debug triggers, the SBI implementation MUST clear
the vs, vu, s, and U bits of the mapped HW debug trigger.

The possible error codes returned in sbiret.error are shown in Table 105.

Table 105. Debug Triggers Disable Errors

Error code Description

SBI_SUCCESS Triggers disabled successfully.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

19.9. Function Listing | Page 87

Error code Description

SBI_ERR_INVALID PARAM One of the debug trigger with index trig_idx in the specified set of debug triggers
either not mapped to any HW debug trigger OR has trig_idx >= trig_max.

19.9. Function Listing

Table 106. Debug Triggers Function List

Function Name SBI Version FID EID

sbi_debug_num_ triggers 3.0 0 0x44425452
sbi_debug_set_shmem 3.0 1 0x44425452
sbi_debug_read_triggers 3.0 2 0x44425452
sbi_debug_install _triggers 3.0 3 0x44425452
sbi_debug_update_triggers 3.0 4 0x44425452
sbi_debug_uninstall _triggers 3.0 5 0x44425452
sbi_debug_enable_triggers 3.0 6 0x44425452
sbi_debug_disable_triggers 3.0 7 0x44425452

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.1. SBI MPXY and Dedicated SBI extension rule | Page 88
Chapter 20. Message Proxy Extension (EID #0x4D505859 “MPXY")

The Message Proxy (MPXY) extension allows the supervisor software to send and receive messages
through the SBI implementation. This extension defines a generic interface that allows the supervisor
software to implement clients for various messaging protocols implemented by the SBI
implementation (such as RPMI [3], etc). The SBI MPXY is an abstract interface and agnostic of
message protocol implementations in the SBI implementation. The message format used by a client in
the supervisor software to send/receive messages through the SBI MPXY extension is defined by the
corresponding message protocol specification.

This extension requires a per-hart shared memory between the supervisor software and the SBI
implementation for message data transfer. This per-hart shared memory is different from the message
protocol specific shared memory that is used between the SBI implementation and the remote entity
that implements the message protocol. The remote entity can be implemented as a system-level
partition on the same hart or as firmware running on a platform microcontroller or emulated by an
SBI implementation. The supervisor software MUST call the shi_mpxy_set_shmem function to set
up the shared memory before calling any other function defined in the extension.

20.1. SBI MPXY and Dedicated SBI extension rule

The implementation may only provide either an SBI MPXY or a dedicated SBI extension interface for
a specific functionality within the specified message protocol, but never both.

20.2. Message Channels

The MPXY extension defines an abstract message channel which is identified by a unique 32 bits
unsigned integer referred to as channel_id. The supervisor software can discover the channel_1id
of a message channel using standard hardware discovery mechanisms. The message protocol
specification associated with a message channel is discovered through the standard message channel
attributes defined in the following sections.

The type of message data, or the group of messages, that may be transmitted over an MPXY message
channel is defined by the message protocol specification. The message protocol specification may
define multiple message groups, but may allow only a selected set of messages accessible to the
supervisor software via the MPXY extension.

Any channel_1id exported to the supervisor software via the hardware discovery
mechanism is implicitly associated with a particular message protocol transport. This

o binding is internal to the SBI implementation. To the supervisor software, a message
channel is an abstract entity with associated attributes that can be accessed through the
MPXY extension. The message channel attributes describe the characteristics of a
message channel depending on the associated message protocol.

20.3. Message Channel Attributes

Each message channel (channel_1id) has a set of associated attributes which are identified by a
unique 32 bits unsigned integer called attribute_id where each attribute value is 32 bits wide.

The message channel attributes are divided into two categories: standard attributes and message
protocol specific attributes. The encoding of message channel attribute_id is as follows:

RISC-V Supervisor Binary Interface Specification | © RISC-V International

attribute_id[31]
attribute_id[31]

0 (Standard)
1 (Message protocol)

20.3. Message Channel Attributes | Page 89

Standard attributes are defined by the MPXY extension and all message channels MUST support these
attributes. Apart from standard attributes, a message channel may also have message protocol
attributes which are defined by the message protocol specification.

Once a client in supervisor software has verified the channel and its associated attributes, it can use
the MPXY interface to send messages over the message channel where each message is identified by a

32 bits unsigned integer called message_id. The set of message_id that can be sent over an MPXY
channel are defined by the message protocol specification.

Attribute Name

MSG_PROT_ID

MSG_PROT_VERSION

MSG_DATA MAX_ LEN

MSG_SEND_TIMEOUT

MSG_COMPLETION_TIMEOUT

Table 107. MPXY Channel Attributes

Attribute ID

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

Access

RO

RO

RO

RO

RO

Description

Message Protocol Identifier

Unique ID for identifying the message protocol
specification. The table Table 108 provides a list of
supported message protocol specifications and their
IDs.

Message Protocol Version
Version of the message protocol specification.

[31:16]: Major version.
[15:0]: Minor version.

If the message protocol specification has additional
version fields or if the above encoding is not suitable,
the message protocol specification may define
message protocol specific attribute for discovering the
version of the message protocol specification.

Maximum Message Data Length
Maximum message data size in bytes supported by the
message channel.

Message Send Timeout

Timeout for sending a message in microseconds as
supported by the message protocol specification.
Functions which do not wait for response can use this
timeout value.

Message Completion Timeout

This is the aggregate of MSG_SEND_TIMEOUT and the
response receive timeout in microseconds as
supported by the message protocol specification.
Functions which wait for response can use this
timeout value.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.3. Message Channel Attributes | Page 90

Attribute Name

CHANNEL_CAPABILITY

SSE_EVENT_ID

MSI_CONTROL

Attribute ID

0x00000005

0x00000006

0x00000007

Access

RO

RO

RW

Description

Channel Capabilities Bits

[31:6]: Reserved and "0°

[5]: Get Notifications (FID #6)
Support

[4]: Send Message without
Response (FID #5) Support

[3]1: Send Message with
Response (FID #4) Support

[2]: Events State Support
[1]: SSE Event

[6]: MSI Interrupt

Any defined bit as 1 means the corresponding
capability is supported.

The SBI implementation only needs to support one
notification indication method, either MSI or SSE. If
both are enabled, the MSI is preferred over the SSE
event.

If the Get Notifications (FID #6) is not supported then
the Events State Support, SSE Event and MSI

Interrupt bits will be 0.

SSE Event ID

Channel SSE event ID if the SSE is supported as
discovered via CHANNEL_CAPABILITY attribute. If
the SSE is not supported then this value is
unspecified.

MSI Control
MSI interrupt control for notification indication.

(o)
1

Disable
1 = Enable

This attribute can be set to 1 if MST_ADDR_LOW and

MSI_ADDR_HIGH attributes point to a valid MSI
target.

If the message channel does not support MSI based
notification indication discovered via the

CHANNEL_CAPABILITY attribute, then the

MSI_CONTROL will ignore writes and always reads
zero.

The reset value of this attribute is 0.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.4. Message Protocol IDs | Page 91

Attribute Name Attribute ID Access Description

MSI_ADDR_LOW 0x00000008 RW MSI Address Low
Low 32 bits of the MSI target physical address.

If the message channel does not support MSI based
notification indication then this attribute ignores

writes and always reads 0.

The reset value of this attribute is 0.

MSI_ADDR_HIGH 0x00000009 RW MSI Address High
High 32 bits of the MSI target physical address.

If the message channel does not support MSI based
notification indication then this attribute ignores

writes and always reads 0.

The reset value of this attribute is 0.

MSI_DATA 0xO000000A RW MSI Data
MSI data word written to the MSI target.

If the message channel does not support MSI based
notification indication then this attribute ignores

writes and always reads 0.

The reset value of this attribute is 0.

EVENTS_STATE_CONTROL 0x0000000B RW Events State Control.
If the message channel supports notification events
state data then this attribute can be used to enable
state reporting like number of events RETURNED,
REMAINING or LOST after a call to Get Notifications
(FID #6) function.

The reset value of this attribute is 0, which means
disabled. If a client wants to enable events state
reporting, it MUST write 1. If the events state
reporting is not supported by the channel or the Get
Notifications (FID #6) function is not implemented as
indicated by the CHANNEL_CAPABILITY attribute,
then the writes to this attribute will be ignored.

More details on events state data are mentioned in the
function Get Notifications (FID #6) description.

RESERVED 0x0000000C - Reserved for future use.
OxTfffffff
Message Protocol Attributes 0x80000000 - Attributes defined by the message protocol
Oxfffffff specification. Refer to message protocol specification
for details.

20.4. Message Protocol IDs

Each message protocol specification supporting MPXY extension will be assigned a 32 bits identifier
which is listed in the table below. New message protocol enabling support for MPXY will need to be
added in the below table with its assigned ID.

Table 108. MPXY Message Protocol IDs

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.5. Function: Set shared memory (FID #0) | Page 92

Message Protocol Name
RPMI
RESERVED

Vendor Specific

20.5. Function: Set shared memory (FID #0)

MSG_PROT_ID value
0x00000000
0x00000001 - Ox7FfFFfff
0x80000000 - OxfFfffff

Description

RPMI [3]

Custom vendor specific message protocol

struct sbiret sbi_mpxy_set_shmem(unsigned long shmem_size,
unsigned long shmem_phys_1lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set the shared memory for sending and receiving messages on the calling hart.

If both shmem_phys_1lo and shmem_phys_hi parameters are not all-ones bit-wise then the
shmem_phys_10 specifies the lower XLEN bits and shmem_phys_h1 specifies the upper XLEN bits
of the shared memory physical base address. The shmem_phys_10 MUST be 4096 bytes aligned and
the shmem_size MUST be multiples of 4096 bytes.

If both shmem_phys_1lo and shmem_phys_hi parameters are all-ones bit-wise then shared

memory is disabled and shmem_size parameter is ignored.

The flags parameter specifies configuration for shared memory setup and it is encoded as follows:

flags[XLEN-1:2]: Reserved for future use and should be zero.
flags[1:0]: Shared memory setup mode (Refer table below).

Mode

OVERWRITE

OVERWRITE-RETURN

RESERVED

Table 109. MPXY Shared Memory Setup Mode

flags[1:0]
0bOO

0b01

Obl0 - Obll

Description

Ignore the current shared memory state and force
setup the new shared memory based on the passed
parameters.

Same as OVERWRITE mode and additionally after the
new shared memory state is enabled, the old shared
memory shmem_size, shmem_phys_10 and
shmem_phys_hi are written in the same order to
the new shared memory at offset 0x0.

This flag provide provision to software layers in the
supervisor software that want to send messages using
the shared memory but do not know the shared
memory details that has already been setup. Those
software layers can temporarily setup their own
shared memory on the calling hart, send messages
and then restore back the previous shared memory
with the SBI implementation.

Reserved for future use. Must be initialized to 0.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.6. Function: Get Channel IDs (FID #1) | Page 93

The supervisor software may consist of several software layers, including an operating
system and runtime firmware, which are mutually exclusive and without any provision for
data exchange. Typically, a call is required to invoke the runtime firmware when required
by the operating system, and once the runtime firmware has finished the task it returns
control to the operating system.

o The operating system may setup the shared memory per-hart using the OVERWRITE flag
during boot. The runtime firmware may also need to use the MPXY channel to send the
message data when its invoked. In such a scenario the runtime firmware can setup its own
MPXY channel shared memory on the called hart using the OVERWRITE-RETURN flag
and when finished, can restore the previous shared memory before returning control to the
operating system.

The possible error codes returned in shiret.error are below.

Table 110. MPXY Set Shared Memory Errors

Error code Description
SBI_SUCCESS Shared memory was set or cleared successfully.
SBI_ERR_INVALID_PARAM The flags parameter has invalid value or the bits set are within the reserved range.

Or the shmem_phys_10 parameter is not 4096 bytes aligned or shmem_size is not
multiple of 4096 bytes.

SBI_ERR_INVALID ADDRESS The shared memory pointed to by the shmem_phys_10 and shmem_phys_hi
parameters does not satisfy the requirements described in Section 3.2.

SBI_ERR_FAILED Failed due to other unspecified errors.

o The supervisor software MUST call this function to setup the shared memory first before
calling any other function in this extension.

20.6. Function: Get Channel IDs (FID #1)

struct sbiret sbi_mpxy_get_channel_ids(uint32_t start_index)

Get channel IDs of the message channels accessible to the supervisor software in the shared memory
of the calling hart. The channel IDs are returned as an array of 32 bits unsigned integers where the

start_index parameter specifies the array index of the first channel ID to be returned in the shared
memory.

The SBI implementation will return channel IDs in the shared memory of the calling hart as specified
by the table below:

Table 111. MPXY Channel IDs Shared Memory Layout

Offset Field Description

0x0 REMAINING Remaining number of channel IDs.

0x4 RETURNED Number of channel IDs (N) returned in the shared
memory.

0x8 CHANNEL_ID [start_index + O] Channel ID

0xC CHANNEL_ID [start_index + 1] Channel ID

0x8 + ((N-1) * 4) CHANNEL_ID [start_index + N - 1] Channel ID

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.7. Function: Read Channel Attribute (FID #2) | Page 94

The number of channel IDs returned in the shared memory are specified by the RETURNED field
whereas the REMAINING field specifies the number of remaining channel IDs. If the REMAINING is
not 0 then supervisor software can call this function again to get remaining channel IDs with
start_index passed accordingly. The supervisor software may require multiple SBI calls to get the
complete list of channel IDs depending on the RETURNED and REMAINING fields.

The sbiret.value is always set to zero whereas the possible error codes returned in
sbiret.error are below.

Table 112. MPXY Get Channel IDs Errors

Error code Description

SBI_SUCCESS The channel ID array has been written successfully.
SBI_ERR_INVALID PARAM start_index isinvalid.

SBI_ERR_NO_SHMEM The shared memory setup is not done or disabled for the calling hart.
SBI_ERR_DENIED Getting channel ID array is not allowed on the calling hart.
SBI_ERR_FAILED Failed due to other unspecified errors.

20.7. Function: Read Channel Attribute (FID #2)

struct sbiret sbi_mpxy_read_attributes(uint32_t channel_id,
uint32_t base_attribute_id,
uint32_t attribute_count)

Read message channel attributes. The channel_1id parameter specifies the message channel whereas

base_attribute_id and attribute_count parameters specify the range of attribute ids to be
read.

Supervisor software MUST call this function for the contiguous attribute range where the

base_attribute_id is the starting index of that range and attribute_count is the number of
attributes in the contiguous range. If there are multiple such attribute ranges then multiple calls of
this function may be done from supervisor software. Supervisor software MUST read the message

protocol specific attributes via separate call to this function with base_attribute_id and
attribute_count without any overlap with the MPXY standard attributes.

Upon calling this function the message channel attribute values are returned starting from the offset
0x0 in the shared memory of the calling hart where the value of the attribute with attribute_id =
base_attribute_id + 1iisavailable at the shared memory offset4 * 1.

The possible error codes returned in shiret.error are shown below.

Table 113. MPXY Read Channel Attributes Errors

Error code Description

SBI_SUCCESS Message channel attributes has been read successfully.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.8. Function: Write Channel Attribute (FID #3) | Page 95

Error code Description

SBI_ERR_INVALID PARAM attribute_countis 0.

Orthe attribute_count > (shared memory size)/4.Orthe
base_attribute_count_id is notvalid.

SBI_ERR_NOT_SUPPORTED channel_id is not supported or invalid.

SBI_ERR_BAD_RANGE One of the attributes in the range specified by the base_attribute_id and
attribute_count do notexist.

SBI_ERR_NO_ SHMEM The shared memory setup is not done or disabled for calling hart.

SBI_ERR_FAILED Failed due to other unspecified errors.

20.8. Function: Write Channel Attribute (FID #3)

struct sbiret sbi_mpxy_write_attributes(uint32_t channel_id,
uint32_t base_attribute_id,
uint32_t attribute_count)

Write message channel attributes. The channel_id parameter specifies the message channel

whereas base_attribute_id and attribute_count parameters specify the range of attribute
ids.

Supervisor software MUST call this function for the contiguous attribute range where the

base_attribute_id is the starting index of that range and attribute_count is the number of
attributes in the contiguous range. If there are multiple such attribute ranges then multiple calls of
this function may be done from supervisor software. Apart from contiguous attribute indices,
supervisor software MUST also consider the attribute access permissions and attributes with RO (Read
Only) access MUST be excluded from the attribute range. Supervisor software MUST read the message

protocol specific attributes via separate call to this function with base_attribute_id and
attribute_count without any overlap with the MPXY standard attributes.

Upon calling this function the message channel attribute values are returned starting from the offset
OX0 in the shared memory of the calling hart where the value to be written in attribute with
attribute_id = base_attribute_id + 1isatthe shared memory offset4 * 1.

The possible error codes returned in sbiret.error are shown below.

Table 114. MPXY Write Channel Attributes Errors

Error code Description
SBI_SUCCESS Message channel attributes has been written successfully.
SBI_ERR_INVALID _PARAM attribute_countis0.

Orthe attribute_count > (shared memory size)/4.
Or the base_attribute_count_id is notvalid.

SBI_ERR_NOT_SUPPORTED channel_id is not supported or invalid.

SBI_ERR_BAD_RANGE One of the attributes in the range specified by the base_attribute_id and
attribute_count do notexist or the attribute is read-only (RO).

Orbase_attribute_idand attribute_count resultinto a range which
overlaps with standard and message protocol specific attributes.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.9. Function: Send Message with Response (FID #4) | Page 96

Error code Description

SBI_ERR_NO_SHMEM The shared memory setup is not done or disabled for calling hart.
SBI_ERR_DENIED If any attribute write dependency is not satisfied.
SBI_ERR_FAILED Failed due to other unspecified errors.

20.9. Function: Send Message with Response (FID #4)

struct sbhiret
sbi_mpxy_send_message_with_response(uint32_t channel_id,
uint32_t message_id,
unsigned long message_data_len)

Send a message to the MPXY channel specified by the channel_id parameter. The message_id
parameter specifies a message specific to a message protocol to be sent whereas the

message_data_len parameter represents the length of message data in bytes which is located at
the offset 0X0 in the shared memory setup by the calling hart.

After sending the message, this function waits for SBI implementation for the message response. This
function only succeeds upon receipt of the response. Some messages may require sending multiple
times for complete data transfer so the supervisor software is responsible for doing multiple requests
in such cases. Details of such cases can be found in respective message protocol specifications.

Upon calling this function the SBI implementation MUST write the response message data at the
offset OX0 in the shared memory setup by the calling hart and the number of bytes written will be

returned through sbiret.value. The layout of data in case of both request and response is
according to the respective message protocol specification message format.

Upon success, this function:

1) Writes the message response data at offset X0 of the shared memory setup by the calling hart.
2) Returns SBI_SUCCESS in shiret.error.

3) Returns message response data length in shiret.value.

This function is optional. If this function is implemented, the corresponding bit in the
CHANNEL_CAPABILITY attribute is set to 1.

The possible error codes returned in shiret.error are below.

Table 115. MPXY Send Message with Response Errors

Error code Description

SBI_SUCCESS Message sent and response received successfully.

SBI_ERR_INVALID_PARAM The message_data_len > max_message_data_len for specified
channel_id.
Or the message_data_len is greater than the size of shared memory on the calling
hart.

SBI_ERR_NOT_SUPPORTED channel_id is not supported or invalid.

Or the message represented by the message_1id is not supported or invalid.
Or this function is not supported.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.10. Function: Send Message without Response (FID #5) | Page 97

Error code Description

SBI_ERR_NO_SHMEM The shared memory setup is not done or disabled for calling hart.
SBI_ERR_TIMEOUT Waiting for response timeout.

SBI_ERR_IO Failed due to I/O error.

SBI_ERR_FAILED Failed due to other unspecified errors.

20.10. Function: Send Message without Response (FID #5)

struct sbhiret
sbi_mpxy_send_message_without_response(uint32_t channel_id,
uint32_t message_id,
unsigned long message_data_len)

Send a message to the MPXY channel specified by the channel_id parameter. The message_id
parameter specifies a message specific to a message protocol to be sent whereas the

message_data_len parameter represents the length of message data in bytes which is located at
the offset 0X0 in the shared memory setup by the calling hart.

This function does not wait for response and returns after successful message transmission.

Some messages may require sending multiple times for complete data transfer so the supervisor
software is responsible for doing multiple requests in such cases. Details of such cases can be found in
the respective message protocol specification.

This function is optional. If this function is implemented, the corresponding bit in the
CHANNEL_CAPABILITY attribute is set to 1.

The possible error codes returned in shiret.error are below.

Table 116. MPXY Send Message without Response Errors

Error code Description

SBI_SUCCESS Message sent successfully.

SBI_ERR_INVALID_PARAM The message_data_len > max_message_data_len for specified
channel_id.
Or the message_data_len is greater than the size of shared memory on the calling
hart.

SBI_ERR_NOT_SUPPORTED channel_id is not supported or invalid.

Or the message represented by the message_1id is not supported or invalid.
Or this function is not supported.

SBI_ERR_NO_SHMEM The shared memory setup is not done or disabled for calling hart.
SBI_ERR_TIMEOUT Message send timeout.

SBI_ERR_IO Failed due to I/O error.

SBI_ERR_FAILED Failed due to other unspecified errors.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.11. Function: Get Notifications (FID #6) | Page 98

20.11. Function: Get Notifications (FID #6)

struct sbiret sbi_mpxy_get_notification_events(uint32_t channel_id)

Get the message protocol specific notification events on the MPXY channel specified by the

channel_id parameter. The events are message protocol specific and MUST be defined in the
respective message protocol specification. The SBI implementation may support notification
indication mechanisms like MSI or SSE to indicate the availability of events to the supervisor
software.

If any notification indication mechanism like MSI or SSE is not supported/configured for
6 the message channel then supervisor software can periodically call

shi_mpxy_get_notification_events() (ie. poll).

Notifications are asynchronous in nature from Supervisor software perspective. Caching
or buffering mechanism if any is specific to SBI implementation. Supervisor software may

o fetch the notification events through this function periodically if polling and fast enough in
order to avoid missing any event due to limited buffering in SBI implementation.

Depending on the message protocol implementation, a channel may support events state which

includes data like number of events RETURNED, REMAINING and LOST. Events state data is optional

and if the message protocol implementation supports then the channel will have a corresponding bit

setin CHANNEL_CAPABILITY attribute.
By default the events state is disabled and clients can explicitly enable it through the

EVENTS_STATE_CONTROL attribute.

Only after enabling the events state reporting through EVENTS_STATE_CONTROL
0 attribute, the events state data will start getting accumulated by the SBI implementation.

A client may enable the EVENTS_STATE_CONTROL attribute in the initialization phase
if it is supported.

In the shared memory, 16 bytes starting from offset X0 are used for this state data.

Shared memory layout with events state data (each field is of 4 bytes):

Offset Ox0: REMAINING

Offset Ox4: RETURNED

Offset Ox8: LOST

Offset OxC: RESERVED

Offset Ox10: Start of message protocol specific notification events data

The RETURNED field represents the number of events which are returned in the shared memory when
this function is called. The REMAINING field represents the number of events still remaining with SBI
implementation and the client may need to call this function again until the REMAINING field
becomes 0.

The LOST field represents the number of events which are lost due to limited buffer size managed by

RISC-V Supervisor Binary Interface Specification | © RISC-V International

20.12. Function Listing | Page 99

the message protocol implementation. Details of buffering/caching of events is specific to message
protocol implementation.

Upon calling this function the received notification events are written by the SBI implementation at

the offset 0x10 in the shared memory setup by the calling hart irrespective of events state data
reporting. If events state data reporting is disabled or not supported, then the values in events state
fields are undefined. The number of the bytes written to the shared memory will be returned through

sbiret.value which is the number of bytes starting from offset @x10. The layout and encoding of
notification events are defined by the message protocol specification associated with the message

proxy channel (channel_id).

This function is optional. If this function is implemented, the corresponding bit in the
CHANNEL_CAPABILITY attribute is set to 1.

The possible error codes returned in shiret.error are below.

Table 117. MPXY Get Notifications Errors

Error code Description
SBI_SUCCESS Notifications received successfully.
SBI_ERR_NOT_SUPPORTED channel_id is not supported or invalid.

Or this function is not supported.
SBI_ERR_NO_ SHMEM The shared memory setup is not done or disabled for calling hart.
SBI_ERR_IO Failed due to I/O error.
SBI_ERR_FAILED Failed due to other unspecified errors.

20.12. Function Listing

Table 118. MPXY Function List

Function Name SBI Version FID EID

sbi_mpxy_set_shmem 3.0 0 0x4D505859
sbi_mpxy_get_channel _ids 3.0 1 0x4D505859
sbi_mpxy_read_attributes 3.0 2 0x4D505859
sbi_mpxy_write_attributes 3.0 3 0x4D505859
sbi_mpxy_send_message_with_response 3.0 4 0x4D505859
sbi_mpxy_send_message_without_response 3.0 5 0x4D505859
sbi_mpxy_get_notification_events 3.0 6 0x4D505859

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 21. Experimental SBI Extension Space (EIDs #0x08000000 - #0xO8FFFFFF) | Page 100
Chapter 21. Experimental SBI Extension Space (EIDs #0x08000000 - #0Ox08FFFFFF)

The SBI specification doesn’t define any rules for the EID management for experimental SBI

extensions.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 22. Vendor Specific Extension Space (EIDs #0x09000000 - #0x09FFFFFF) | Page 101
Chapter 22. Vendor Specific Extension Space (EIDs #0x09000000 - #Ox09FFFFFF)

The lower 24 bits of vendor specific EID must match the lower 24 bits of the mvendorid value.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

Chapter 23. Firmware Specific Extension Space (EIDs #0xOA000000 - #OxOAFFFFFF) | Page 102
Chapter 23. Firmware Specific Extension Space (EIDs #0x0A000000 - #O0xOAFFFFFF)

The lower 24 bits of the firmware EID must match the lower 24 bits of the SBI implementation ID. The
firmware specific SBI extensions space is reserved for SBI implementations. It provides firmware
specific SBI functions which are defined in the external firmware specification.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

References | Page 103

References

[1] “The RISC-V Instruction Set Manual, Volume II: Privileged Architecture.” 2021, [Online].
Available: github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12.

[2] “The RISC-V Debug Specification.” 2024, [Online]. Available: github.com/riscv/riscv-debug-spec/
releases/tag/1.0.0-rc3.

[3] “The RISC-V Platform Management Interface Specification.” 2024, [Online]. Available:
github.com/riscv-non-isa/riscv-rpmi/blob/main/riscv-rpmi.adoc.

RISC-V Supervisor Binary Interface Specification | © RISC-V International

https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://github.com/riscv/riscv-debug-spec/releases/tag/1.0.0-rc3
https://github.com/riscv/riscv-debug-spec/releases/tag/1.0.0-rc3
https://github.com/riscv-non-isa/riscv-rpmi/blob/main/riscv-rpmi.adoc

	RISC-V Supervisor Binary Interface Specification
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Change Log
	Version 3.0-rc1
	Version 2.0
	Version 2.0-rc8
	Version 2.0-rc7
	Version 2.0-rc6
	Version 2.0-rc5
	Version 2.0-rc4
	Version 2.0-rc3
	Version 2.0-rc2
	Version 2.0-rc1
	Version 1.0.0
	Version 1.0-rc3
	Version 1.0-rc2
	Version 1.0-rc1
	Version 0.3.0
	Version 0.3-rc1
	Version 0.2

	Chapter 1. Introduction
	Chapter 2. Terms and Abbreviations
	Chapter 3. Binary Encoding
	3.1. Hart list parameter
	3.2. Shared memory physical address range parameter

	Chapter 4. Base Extension (EID #0x10)
	4.1. Function: Get SBI specification version (FID #0)
	4.2. Function: Get SBI implementation ID (FID #1)
	4.3. Function: Get SBI implementation version (FID #2)
	4.4. Function: Probe SBI extension (FID #3)
	4.5. Function: Get machine vendor ID (FID #4)
	4.6. Function: Get machine architecture ID (FID #5)
	4.7. Function: Get machine implementation ID (FID #6)
	4.8. Function Listing
	4.9. SBI Implementation IDs

	Chapter 5. Legacy Extensions (EIDs #0x00 - #0x0F)
	5.1. Extension: Set Timer (EID #0x00)
	5.2. Extension: Console Putchar (EID #0x01)
	5.3. Extension: Console Getchar (EID #0x02)
	5.4. Extension: Clear IPI (EID #0x03)
	5.5. Extension: Send IPI (EID #0x04)
	5.6. Extension: Remote FENCE.I (EID #0x05)
	5.7. Extension: Remote SFENCE.VMA (EID #0x06)
	5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)
	5.9. Extension: System Shutdown (EID #0x08)
	5.10. Function Listing

	Chapter 6. Timer Extension (EID #0x54494D45 "TIME")
	6.1. Function: Set Timer (FID #0)
	6.2. Function Listing

	Chapter 7. IPI Extension (EID #0x735049 "sPI: s-mode IPI")
	7.1. Function: Send IPI (FID #0)
	7.2. Function Listing

	Chapter 8. RFENCE Extension (EID #0x52464E43 "RFNC")
	8.1. Function: Remote FENCE.I (FID #0)
	8.2. Function: Remote SFENCE.VMA (FID #1)
	8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
	8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
	8.5. Function: Remote HFENCE.GVMA (FID #4)
	8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
	8.7. Function: Remote HFENCE.VVMA (FID #6)
	8.8. Function Listing

	Chapter 9. Hart State Management Extension (EID #0x48534D "HSM")
	9.1. Function: Hart start (FID #0)
	9.2. Function: Hart stop (FID #1)
	9.3. Function: Hart get status (FID #2)
	9.4. Function: Hart suspend (FID #3)
	9.5. Function Listing

	Chapter 10. System Reset Extension (EID #0x53525354 "SRST")
	10.1. Function: System reset (FID #0)
	10.2. Function Listing

	Chapter 11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")
	11.1. Event: Hardware general events (Type #0)
	11.2. Event: Hardware cache events (Type #1)
	11.3. Event: Hardware raw events (Type #2)
	11.4. Event: Hardware raw events v2 (Type #3)
	11.5. Event: Firmware events (Type #15)
	11.6. Function: Get number of counters (FID #0)
	11.7. Function: Get details of a counter (FID #1)
	11.8. Function: Find and configure a matching counter (FID #2)
	11.9. Function: Start a set of counters (FID #3)
	11.10. Function: Stop a set of counters (FID #4)
	11.11. Function: Read a firmware counter (FID #5)
	11.12. Function: Read a firmware counter high bits (FID #6)
	11.13. Function: Set PMU snapshot shared memory (FID #7)
	11.14. Function: Get PMU Event info (FID #8)
	11.15. Function Listing

	Chapter 12. Debug Console Extension (EID #0x4442434E "DBCN")
	12.1. Function: Console Write (FID #0)
	12.2. Function: Console Read (FID #1)
	12.3. Function: Console Write Byte (FID #2)
	12.4. Function Listing

	Chapter 13. System Suspend Extension (EID #0x53555350 "SUSP")
	13.1. Function: System Suspend (FID #0)
	13.2. Function Listing

	Chapter 14. CPPC Extension (EID #0x43505043 "CPPC")
	14.1. Function: Probe CPPC register (FID #0)
	14.2. Function: Read CPPC register (FID #1)
	14.3. Function: Read CPPC register high bits (FID #2)
	14.4. Function: Write to CPPC register (FID #3)
	14.5. Function Listing

	Chapter 15. Nested Acceleration Extension (EID #0x4E41434C "NACL")
	15.1. Feature: Synchronize CSR (ID #0)
	15.2. Feature: Synchronize HFENCE (ID #1)
	15.3. Feature: Synchronize SRET (ID #2)
	15.4. Feature: Autoswap CSR (ID #3)
	15.5. Function: Probe nested acceleration feature (FID #0)
	15.6. Function: Set nested acceleration shared memory (FID #1)
	15.7. Function: Synchronize shared memory CSRs (FID #2)
	15.8. Function: Synchronize shared memory HFENCEs (FID #3)
	15.9. Function: Synchronize shared memory and emulate SRET (FID #4)
	15.10. Function Listing

	Chapter 16. Steal-time Accounting Extension (EID #0x535441 "STA")
	16.1. Function: Set Steal-time Shared Memory Address (FID #0)
	16.2. Function Listing

	Chapter 17. Supervisor Software Events Extension (EID #0x535345 "SSE")
	17.1. Software Event Identification
	17.2. Software Event States
	17.3. Software Event Priority
	17.4. Software Event Attributes
	17.5. Software Event Injection
	17.6. Software Event Completion
	17.7. Function: Read software event attributes (FID #0)
	17.8. Function: Write software event attributes (FID #1)
	17.9. Function: Register a software event (FID #2)
	17.10. Function: Unregister a software event (FID #3)
	17.11. Function: Enable a software event (FID #4)
	17.12. Function: Disable a software event (FID #5)
	17.13. Function: Complete software event handling (FID #6)
	17.14. Function: Inject a software event (FID #7)
	17.15. Function: Unmask software events on a hart (FID #8)
	17.16. Function: Mask software events on a hart (FID #9)
	17.17. Function Listing

	Chapter 18. SBI Firmware Features Extension (EID #0x46574654 "FWFT")
	18.1. Function: Firmware Features Set (FID #0)
	18.2. Function: Firmware Features Get (FID #1)
	18.3. Function Listing

	Chapter 19. Debug Triggers Extension (EID #0x44425452 "DBTR")
	19.1. Function: Get number of triggers (FID #0)
	19.2. Function: Set trigger shared memory (FID #1)
	19.3. Function: Read triggers (FID #2)
	19.4. Function: Install triggers (FID #3)
	19.5. Function: Update triggers (FID #4)
	19.6. Function: Uninstall a set of triggers (FID #5)
	19.7. Function: Enable a set of triggers (FID #6)
	19.8. Function: Disable a set of triggers (FID #7)
	19.9. Function Listing

	Chapter 20. Message Proxy Extension (EID #0x4D505859 “MPXY”)
	20.1. SBI MPXY and Dedicated SBI extension rule
	20.2. Message Channels
	20.3. Message Channel Attributes
	20.4. Message Protocol IDs
	20.5. Function: Set shared memory (FID #0)
	20.6. Function: Get Channel IDs (FID #1)
	20.7. Function: Read Channel Attribute (FID #2)
	20.8. Function: Write Channel Attribute (FID #3)
	20.9. Function: Send Message with Response (FID #4)
	20.10. Function: Send Message without Response (FID #5)
	20.11. Function: Get Notifications (FID #6)
	20.12. Function Listing

	Chapter 21. Experimental SBI Extension Space (EIDs #0x08000000 - #0x08FFFFFF)
	Chapter 22. Vendor Specific Extension Space (EIDs #0x09000000 - #0x09FFFFFF)
	Chapter 23. Firmware Specific Extension Space (EIDs #0x0A000000 - #0x0AFFFFFF)
	References

