
Intel® Embree
High Performance Ray Tracing Kernels

Version 4.4.0
March 27, 2025

2

Contents

1 Intel® Embree Overview 3
1.1 Supported Platforms . 4
1.2 Embree Support and Contact . 4
1.3 Version History . 4

2 Installation of Embree 23
2.1 Windows Installation . 23
2.2 Linux Installation . 23
2.3 macOS Installation . 23
2.4 Building Embree Applications . 24
2.5 Building Embree SYCL Applications 24
2.6 Building Embree Tests . 25

3 Compiling Embree 26
3.1 Linux and macOS . 26
3.2 Linux SYCL Compilation . 28
3.3 Windows . 29
3.4 Windows SYCL Compilation . 31
3.5 CMake Configuration . 32

4 Embree Tutorials 36
4.1 Minimal . 37
4.2 Host Device Memory . 37
4.3 Triangle Geometry . 37
4.4 Dynamic Scene . 38
4.5 Multi Scene Geometry . 39
4.6 User Geometry . 40
4.7 Viewer . 41
4.8 Intersection Filter . 42
4.9 Instanced Geometry . 43
4.10 Instance Array Geometry . 43
4.11 Multi Level Instancing . 44
4.12 Path Tracer . 45
4.13 Hair . 46
4.14 Curve Geometry . 47
4.15 Subdivision Geometry . 48
4.16 Displacement Geometry . 49
4.17 Grid Geometry . 50
4.18 Point Geometry . 51
4.19 Motion Blur Geometry . 52
4.20 Quaternion Motion Blur . 53
4.21 Interpolation . 54
4.22 Closest Point . 55
4.23 Voronoi . 56

CONTENTS 3

4.24 Collision Detection . 57
4.25 BVH Builder . 57
4.26 BVH Access . 57
4.27 Find Embree . 58
4.28 Next Hit . 58

4

Chapter 1

Intel® EmbreeOverview

Intel® Embree is a high-performance ray tracing library developed at Intel, which
is released as open source under the Apache 2.0 license. Intel® Embree supports
x86 CPUs under Linux, macOS, and Windows; ARM CPUs on Linux and macOS;
as well as Intel® GPUs under Linux and Windows.

Intel® Embree targets graphics application developers to improve the perfor-
mance of photo-realistic rendering applications. Embree is optimized towards
production rendering, by putting focus on incoherent ray performance, high
quality acceleration structure construction, a rich feature set, accurate primitive
intersection, and low memory consumption.

Embree’s feature set includes various primitive types such as triangles (as
well quad and grids for lower memory consumption); Catmull-Clark subdivi-
sion surfaces; various types of curve primitives, such as flat curves (for distant
views), round curves (for closeup views), and normal oriented curves, all sup-
ported with different basis functions (linear, Bézier, B-spline, Hermite, and Cat-
mull Rom); point-like primitives, such as ray oriented discs, normal oriented
discs, and spheres; user defined geometries with a procedural intersection func-
tion; multi-level instancing; filter callbacks invoked for any hit encountered; mo-
tion blur including multi-segment motion blur, deformation blur, and quaternion
motion blur; and ray masking.

Intel® Embree contains ray tracing kernels optimized for the latest x86 pro-
cessors with support for SSE, AVX, AVX2, and AVX-512 instructions, and uses
runtime code selection to choose between these kernels. Intel® Embree contains
algorithms optimized for incoherent workloads (e.g. Monte Carlo ray tracing al-
gorithms) and coherent workloads (e.g. primary visibility and hard shadow rays)
as well as supports for dynamic scenes by implementing high-performance two-
level spatial index structure construction algorithms.

Intel® Embree supports applications written with the Intel® Implicit SPMD
Program Compiler (Intel® ISPC, https://ispc.github.io/) by providing an
ISPC interface to the core ray tracing algorithms. This makes it possible to write
a renderer that automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-
512 instructions.

Intel® Embree supports Intel GPUs through the SYCL open standard program-
ming language. SYCL allows to write C++ code that can be run on various de-
vices, such as CPUs and GPUs. Using Intel® Embree application developers can
write a single source renderer that executes efficiently on CPUs and GPUs. Main-
taining just one code base this way can significantly improve productivity and
eliminate inconsistencies between a CPU and GPU version of the renderer. Em-
bree supports GPUs based on the Xe HPG and Xe HPC microarchitecture, which
support hardware accelerated ray tracing do deliver excellent levels of ray trac-
ing performance.

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/
https://www.khronos.org/sycl/

Intel® EmbreeOverview 5

1.1 Supported Platforms

Embree supports Windows (32-bit and 64-bit), Linux (64-bit), and macOS (64-bit).
Under Windows, Linux and macOS x86 based CPUs are supported, while ARM
CPUs are currently only supported under Linux and macOS (e.g. Apple M1).
ARM support for Windows experimental.

Embree supports Intel GPUs based on the Xe HPG microarchitecture (Intel®
Arc™ GPU) under Linux and Windows and Xe HPC microarchitecture (Intel®
Data Center GPU Flex Series and Intel® Data Center GPU Max Series) under
Linux.

The code compiles with the Intel® Compiler, Intel® oneAPI DPC++ Compiler,
GCC, Clang, and the Microsoft Compiler. To use Embree on the GPU the Intel®
oneAPI DPC++ Compiler must be used. Please see section Compiling Embree for
details on tested compiler versions.

Embree requires at least an x86 CPU with support for SSE2 or an Apple M1
CPU.

1.2 Embree Support andContact

If you encounter bugs please report them via Embree’s GitHub Issue Tracker.
For questions and feature requests please write us at embree_support@

intel.com.
To receive notifications of updates and new features of Embree please sub-

scribe to the Embree mailing list.

1.3 VersionHistory

1.3.1 Embree 4.4
• Added support for passing geometry data to Embree using explicit host
and SYCL device memory (see rtcSetSharedGeometryBufferHostDe-
vice, rtcNewBufferHostDevice, and other API calls with HostDevice
suffix).

• Embree does not use SYCL shared memory anymore internally on systems
without host unified memory (i.e., discrete GPUs). Therefore, memory
transfers are triggered by specific Embree API calls (e.g. rtcCommitScene,
rtcCommitBuffer).

• Objects of type RTCScene are not accessible on a SYCL device anymore.
Ray queries on SYCL devices must be performed using RTCTraversable
objects and the rtcTraversableIntersect and rtcTraversableOc-
cluded API calls.

• Embree does not query the availability of RDRAND for its ISA detection
anymore, which caused issues on some older AMD CPUs.

• Performance improvements on GPU for the two level instancing case
(RTC_MAX_INSTANCE_LEVEL_COUNT 2).

1.3.2 Embree4.3.3
• Added RTCError RTC_ERROR_LEVEL_ZERO_RAYTRACING_SUPPORT_MISSING
which can indicate a GPU driver that is too old or not installed properly.

• Added the API function rtcGetDeviceLastErrorMessage to query addi-
tional information about the last RTCError returned by rtcGetDeviceEr-
ror. This can be used in case device creation failed and a rtcErrorFunction
could not be set up for this purpose.

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/

Intel® EmbreeOverview 6

• Added the API function rtcGetErrorString which returns a string represen-
tation of a given RTCError error code. This is purely meant for convenient
error information reporting on the user application side.

• Performance improvements on GPU for the one level instancing case
(RTC_MAX_INSTANCE_LEVEL_COUNT 1).

• Reduced the number of unnecessary GPU-CPU USM back-migrations
which can increase build performance for scene with many instances on
GPU.

• Started adding public CI tests for streamlining integration of external pull
requests.

• Work-around for problem with unsigned Windows binaries.

1.3.3 Embree4.3.2
• Embree now uses level zero raytracing extension to build BVH which en-
ables forward-compatibility. On Linux, the package intel-level-zero-gpu-
raytracing has to be installed in addition to the other packages listed here
https://dgpu-docs.intel.com/.

• MacOS universal binary compilation now works.
• Some bugfixes for AVX512 on MacOS x86 machines.
• Known issue: It is recommended to run Embree on Intel® Data Center
GPUMax Series (e.g. Intel® Data Center GPUMax 1550) with the following
environment settings: NEOReadDebugKeys=1 UseKmdMigration=0

• Known issue: ISPC version of tutorials will not successfully build with
MacOS universal binary compilation.

1.3.4 Embree4.3.1
• Add missing EMBREE_GEOMETRY types to embree-config.cmake
• User defined thread count now takes precedence for internal task scheduler
• Fixed static linking issue with ze_wrapper library
• Better error reporting for SYCL platform and driver problems in embree_info
and tutorial apps.

• Patch to glfw source is not applied by default anymore.
• Known issue: Running Embree on Intel® Data Center GPU Max Series
with 2 tiles (e.g. Intel® Data Center GPU Max 1550) requires setting the
environment variable ZE_FLAT_DEVICE_HIERARCHY=COMPOSITE.

• Known issue: Embree build using Apple Clang 15 and ARM support (via
the SEE2NEON library) may cause “EXEC_BAD_INSTRUCTION” runtime
exceptions. Please use Apple Clang <= 14 on macOS.

1.3.5 Embree4.3.0
• Added instance array primitive for reducing memory requirements in
scenes with large amounts of similar instances.

• Properly checks driver if L0 RTAS extension can get loaded.
• Added varying version of rtcGetGeometryTransform for ISPC.
• Fixed signature of RTCMemoryMonitorFunction for ISPC.
• Add support for ARM64 Windows platform in CMake.

1.3.6 Embree4.2.0
• SYCL version of Embree with GPU support is no longer in beta phase.
• Improved BVH build performance on many core machines for applications
that oversubscribe threads.

• Added rtcGetGeometryTransformFromScene API function that can get
used inside SYCL kernels.

https://dgpu-docs.intel.com/

Intel® EmbreeOverview 7

• No longer linking to ze_loader in SYCLmode to avoid Intel(R) oneAPI Level
Zero dependency for CPU rendering.

• Releasing test package to test Embree.

1.3.7 Embree 4.1.0
• Added support for Intel® Data Center GPU Max Series.
• Added ARM64 Linux support.
• Added EMBREE_BACKFACE_CULLING_SPHERES cmake option. The
new cmake option defaults to OFF.

1.3.8 Embree4.0.1
• Improved performance for Tiger Lake, Comet Lake, Cannon Lake, Kaby
Lake, and Skylake client CPUs by using 256 bit SIMD instructions by de-
fault.

• Fixed brokenmotion blur of RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE
geometry type.

• Fixed bvh build retry issue for TBB 2020.3
• Added support for Intel® Data Center GPU Flex Series
• Fixed issue on systems without a SYCL platform.

1.3.9 Embree4.0.0
• This Embree release adds support for Intel® Arc™ GPUs through SYCL.
• The SYCL support of Embree is in beta phase. Current functionality, qual-
ity, and GPU performance may not reflect that of the final product. Please
read the documentation section “Embree SYCL Known Issues” for known
limitations.

• Embree CPU support in this release as at Gold level, incorporating the
same quality and performance as previous releases.

• A small number of API changes were required to get optimal experience
and performance on the CPU and GPU. See documentation section “Up-
grading from Embree 3 to Embree 4” for details.

• rtcIntersect and rtcOccluded function arguments changed slightly.
• RTCIntersectContext is renamed to RTCRayQuery context and most mem-
bers moved to new RTCIntersectArguments and RTCOccludedArguments
structures.

• rtcFilterIntersection and rtcFilterOcclusion API calls got replaced by rtcIn-
vokeIntersectFilterFromGeometry and rtcInvokeOccludedFilterFromGe-
ometry API calls.

• rtcSetGeometryEnableFilterFunctionFromArguments enables argument
filter functions for some geometry.

• RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray query flag
enables argument filter functions for each geometry.

• User geometry callbacks have to return if a valid hit was found.
• Ray masking is enabled by default now as required by most users.
• The default ray mask for geometries got changed from 0xFFFFFFFF to 0x1.
• Removed ray streamAPI as rarely usedwithminimal performance benefits
over packet tracing.

• Introduced rtcForwardIntersect/rtcForwardOccluded API calls to trace tail
recursive rays from user geometry callback.

• The rtcGetGeometryUserDataFromScene API call got added to be used in
SYCL code.

• Added support for user geometry callback function pointer passed through
ray query context

Intel® EmbreeOverview 8

• Feature flags enable reducing code complexity for optimal performance on
the GPU.

• Fixed compilation issues for ARM AArch64 processor under Linux.
• Setting default frequency level to SIMD256 for ARM on all platforms. This
allows using double pumpedNEONexecution by enabling EMBREE_ISA_NEON2X
in cmake under Linux.

• Fixed missing end caps of motion blurred line segments.
• EMBREE_ISPC_SUPPORT is turned OFF by default.
• Embree drops support of the deprecated Intel(R) Compiler. It is replaced by
the Intel(R) oneAPI DPC++/C++ Compiler on Windows and Linux and the
Intel(R) C++ Classic Compiler on MacOS (latest tested versions is 2023.0.0).

1.3.10 Embree 3.13.5
• Fixed bug in bounding flat Catmull Rom curves of subdivision level 4.
• Improved self intersection avoidance for RTC_GEOMETRY_TYPE_DISC_POINT
geometry type. Intersections are skipped if the ray origin lies inside the
sphere defined by the point primitive. Self intersection avoidance can get
disabled at compile time using the EMBREE_DISC_POINT_SELF_INTERSECTION_AVOIDANCE
cmake option.

• Fixed spatial splitting for non-planar quads.

1.3.11 Embree 3.13.4
• Using 8-wide BVH and double pumped NEON instructions on Apple M1
gives 8% performance boost.

• Fixed binning related crash in SAH BVH builder.
• Added EMBREE_TBB_COMPONENT cmake option to define the compo-
nent/library name of Intel® TBB (default: tbb).

• Embree supports now Intel® oneAPI DPC++/C++ Compiler 2022.0.0

1.3.12 Embree 3.13.3
• Invalid multi segment motion blurred normal oriented curves are properly
excluded from BVH build.

• Fixing issue with normal oriented curve construction when center curve
curvature is very large. Due to this change normal oriented curve shape
changes slightly.

• Fixed crash caused by disabling a geometry and then detaching it from the
scene.

• Bugfix in emulated ray packet intersectionwhen EMBREE_RAY_PACKETS
is turned off.

• Bugfix for linear quaternion interpolation fallback.
• Fixed issues with spaces in path to Embree build folder.
• Some fixes to compile Embree in SSE mode using WebAssembly.
• Bugfix for occlusion rays with grids and ray packets.
• We do no longer provide installers forWindows and macOS, please use the
ZIP files instead.

• Upgrading to Intel® ISPC 1.17.0 for release build.
• Upgrading to Intel® oneTBB 2021.5.0 for release build.

1.3.13 Embree 3.13.2
• Avoiding spatial split positions that are slightly out of geometry bounds.
• Introduced rtcGetGeometryThreadSafe function, which is a thread safe
version of rtcGetGeometry.

• Using more accurate rcp implementation.

Intel® EmbreeOverview 9

• Bugfix to rare corner case of high quality BVH builder.

1.3.14 Embree 3.13.1
• Added support for Intel® ISPC ARM target.
• Releases upgrade to Intel® TBB 2021.3.0 and Intel® ISPC 1.16.1

1.3.15 Embree 3.13.0
• Added support for Apple M1 CPUs.
• RTC_SUBDIVISION_MODE_NO_BOUNDARY now works properly for
non-manifold edges.

• CMake target ‘uninstall’ is not defined if it already exists.
• Embree no longer reads the .embree3 config files, thus all configuration
has to get passed through the config string to rtcNewDevice.

• Releases upgrade to Intel® TBB 2021.2.0 and Intel® ISPC 1.15.0
• Intel® TBB dll is automatically copied into build folder after build on win-
dows.

1.3.16 Embree 3.12.2
• Fixed wrong uv and Ng for grid intersector in robust mode for AVX.
• Removed optimizations for Knights Landing.
• Upgrading release builds to use Intel® oneTBB 2021.1.1

1.3.17 Embree 3.12.1
• Changed default frequency level to SIMD128 for Skylake, Cannon Lake,
Comet Lake and Tiger Lake CPUs. This change typically improves perfor-
mance for renderers that just use SSE by maintaining higher CPU frequen-
cies. In case your renderer is AVX optimized you can get higher ray tracing
performance by configuring the frequency level to simd256 through pass-
ing frequency_level=simd256 to rtcNewDevice.

1.3.18 Embree 3.12.0
• Added linear cone curve geometry support. In this mode a real geometric
surface for curves with linear basis is rendered using capped cones. They
are discontinuous at edge boundaries.

• Enabled fast two level builder for instances when low quality build is re-
quested.

• Bugfix for BVH build when geometries got disabled.
• Added EMBREE_BACKFACE_CULLING_CURVES cmake option. This al-
lows for a cheaper round linear curve intersection when correct internal
tracking and back hits are not required. The new cmake option defaults to
OFF.

• User geometries with invalid bounds with lower>upper in some dimension
will be ignored.

• Increased robustness for grid interpolation code and fixed returned out of
range u/v coordinates for grid primitive.

• Fixed handling of motion blur time range for sphere, discs, and oriented
disc geometries.

• Fixed missing model data in releases.
• Ensure compatibility to newer versions of Intel® oneTBB.
• Motion blur BVH nodes no longer store NaN values.

Intel® EmbreeOverview 10

1.3.19 Embree 3.11.0
• Round linear curves now automatically check for the existence of left and
right connected segments if the flags buffer is empty. Left segments exist
if the segment(id-1) + 1 == segment(id) and similarly for right segments.

• Implemented the min-width feature for curves and points, which allows
to increase the radius in a distance dependent way, such that the curve or
points thickness is n pixels wide.

• Round linear curves are closed now also at their start.
• Embree no longer supports Visual Studio 2013 starting with this release.
• Bugfix in subdivision tessellation level assignment for non-quad base prim-
itives

• Small meshes are directly added to top level build phase of two-level
builder to reduce memory consumption.

• Enabled fast two level builder for user geometries when low quality build
is requested.

1.3.20 Embree 3.10.0
• Added EMBREE_COMPACT_POLYS CMake option which enables double
indexed triangle and quad leaves to reduce memory consumption in com-
pact mode by an additional 40% at about 15% performance impact. This
new mode is disabled by default.

• Compile fix for Intel® oneTBB 2021.1-beta05
• Releases upgrade to Intel® TBB 2020.2
• Compile fix for Intel® ISPC v1.13.0
• Adding RPATH to libembree.so in releases
• Increased required CMake version to 3.1.0
• Made instIDmember for array of pointers ray stream layout optional again.

1.3.21 Embree 3.9.0

• Added round linear curve geometry support. In this mode a real geometric
surface for curves with linear basis is rendered using capped cones with
spherical filling between the curve segments.

• Added rtcGetSceneDevice API function, that returns the device a scene got
created in.

• Improved performance of round curve rendering by up to 1.8x.
• Bugfix to sphere intersection filter invocation for back hit.
• Fixed wrong assertion that triggered for invalid curves which anyway get
filtered out.

• RelWithDebInfo mode no longer enables assertions.
• Fixed an issue in FindTBB.cmake that caused compile error with Debug
build under Linux.

• Embree releases no longer provide RPMs for Linux. Please use the RPMs
coming with the package manager of your Linux distribution.

1.3.22 Embree 3.8.0
• Added collision detection support for user geometries (see rtcCollide API
function)

• Passing geomID to user geometry callbacks.
• Bugfix in AVX512VL codepath for rtcIntersect1
• For sphere geometries the intersection filter gets now invoked for front
and back hit.

• Fixed some bugs for quaternion motion blur.
• RTCRayQueryContext always non-const in Embree API

Intel® EmbreeOverview 11

• Made RTCHit aligned to 16 bytes in Embree API

1.3.23 NewFeatures in Embree 3.7.0
• Added quaternion motion blur for correct interpolation of rotational trans-
formations.

• Fixed wrong bounding calculations when a motion blurred instance did
instantiate a motion blurred scene.

• In robust mode the depth test consistently uses tnear <= t <= tfar now in
order to robustly continue traversal at a previous hit point in a way that
guarantees reaching all hits, even hits at the same place.

• Fixed depth test in robust mode to be precise at tnear and tfar.
• Added next_hit tutorial to demonstrate robustly collecting all hits along a
ray using multiple ray queries.

• Implemented robust mode for curves. This has a small performance impact
but fixes bounding problems with flat curves.

• Improved quality of motion blur BVH by using linear bounds during bin-
ning.

• Implemented issue with motion blur builder where number of time seg-
ments for SAH heuristic were counted wrong due to some numerical is-
sues.

• Fixed an accuracy issue with rendering very short fat curves.
• rtcCommitScene can nowget called during rendering frommultiple threads
to lazily build geometry. When Intel® TBB is used this causes amuch lower
overhead than using rtcJoinCommitScene.

• Geometries can now get attached to multiple scenes at the same time,
which simplifies mapping general scene graphs to API.

• Updated to Intel® TBB 2019.9 for release builds.
• Fixed a bug in the BVH builder for Grid geometries.
• Added macOS Catalina support to Embree releases.

1.3.24 NewFeatures in Embree 3.6.1

• Restored binary compatibility between Embree 3.6 and 3.5 when single-
level instancing is used.

• Fixed bug in subgrid intersector
• Removed point query alignment in Intel® ISPC header

1.3.25 NewFeatures in Embree 3.6
• Added Catmull-Rom curve types.
• Added support for multi-level instancing.
• Added support for point queries.
• Fixed a bug preventing normal oriented curves being used unless timesteps
were specified.

• Fixed bug in external BVH builder when configured for dynamic build.
• Added support for new config flag “user_threads=N” to device initializa-
tion which sets the number of threads used by Intel® TBB but created by
the user.

• Fixed automatic vertex buffer padding when using rtcSetNewGeometry
API function.

1.3.26 NewFeatures in Embree 3.5.2

• Added EMBREE_API_NAMESPACE cmake option that allows to put all
Embree API functions inside a user defined namespace.

Intel® EmbreeOverview 12

• Added EMBREE_LIBRARY_NAME cmake option that allows to rename the
Embree library.

• When Embree is compiled as static library, EMBREE_STATIC_LIB has no
longer to get defined before including the Embree API headers.

• Added CPU frequency_level device configuration to allow an application
to specify the frequency level it wants to run on. This forces Embree to not
use optimizations that may reduce the CPU frequency below that level. By
default Embree is configured to the the AVX-heavy frequency level, thus if
the application uses solely non-AVX code, configuring the Embree device
with “frequency_level=simd128” may give better performance.

• Fixed a bug in the spatial split builder which caused it to fail for scenes
with more than 2^24 geometries.

1.3.27 NewFeatures in Embree 3.5.1
• Fixed ray/sphere intersector to work also for non-normalized rays.
• Fixed self intersection avoidance for ray oriented discswhen non-normalized
rays were used.

• Increased maximal face valence for subdiv patch to 64 and reduced stack
size requirement for subdiv patch evaluation.

1.3.28 NewFeatures in Embree 3.5.0
• Changed normal oriented curve definition to fix waving artefacts.
• Fixed bounding issue for normal oriented motion blurred curves.
• Fixed performance issue with motion blurred point geometry.
• Fixed generation of documentation with new pandoc versions.

1.3.29 NewFeatures in Embree 3.4.0
• Added point primitives (spheres, ray-oriented discs, normal-oriented discs).
• Fixed crash triggered by scenes with only invalid primitives.
• Improved robustness of quad/grid-based intersectors.
• Upgraded to Intel® TBB 2019.2 for release builds.

1.3.30 NewFeatures in Embree 3.3.0
• Added support for motion blur time range per geometry. This way geome-
tries can appear and disappear during the camera shutter and time steps
do not have to start and end at camera shutter interval boundaries.

• Fixed crash with pathtracer when using –triangle-sphere command line.
• Fixed crash with pathtracer when using –shader ao command line.
• Fixed tutorials showing a black window on macOS 10.14 until moved.

1.3.31 NewFeatures in Embree 3.2.4
• Fixed compile issues with ICC 2019.
• Released ZIP files for Windows are now provided in a version linked
against Visual Studio 2013 and Visual Studio 2015.

1.3.32 NewFeatures in Embree 3.2.3
• Fixed crash when using curves with RTC_SCENE_FLAG_DYNAMIC com-
bined with RTC_BUILD_QUALITY_MEDIUM.

Intel® EmbreeOverview 13

1.3.33 NewFeatures in Embree 3.2.2
• Fixed intersection distance for unnormalized rays with line segments.
• Removed libmmd.dll dependency in release builds for Windows.
• Fixed detection of AppleClang compiler under MacOSX.

1.3.34 NewFeatures in Embree 3.2.1
• Bugfix in flat mode for hermite curves.
• Added EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR
cmake option to control self intersection avoidance for flat curves.

• Performance fix when instantiating motion blurred scenes. The applica-
tion should best use two (or more) time steps for an instance that instanti-
ates a motion blurred scene.

• Fixed AVX512 compile issue with GCC 6.1.1.
• Fixed performance issue with rtcGetGeometryUserData when used during
rendering.

• Bugfix in length of derivatives for grid geometry.
• Added BVH8 support for motion blurred curves and lines. For some work-
loads this increases performance by up to 7%.

• Fixed rtcGetGeometryTransform to return the local to world transform.
• Fixed bug in multi segment motion blur that caused missing of perfectly
axis aligned geometry.

• Reduced memory consumption of small scenes by 4x.
• Reduced temporal storage of grid builder.

1.3.35 NewFeatures in Embree 3.2.0
• Improved watertightness of robust mode.
• Line segments, and other curves are now all contained in a single BVH
which improves performance when these are both used in a scene.

• Performance improvement of up to 20% for line segments.
• Bugfix to Embree2 to Embree3 conversion script.
• Added support for Hermite curve basis.
• Semantics of normal buffer for normal oriented curves has changed to sim-
plify usage. Please see documentation for details.

• Using GLFW and imgui in tutorials.
• Fixed floating point exception in static variable initialization.
• Fixed invalidmemory access in rtcGetGeometryTransform for non-motion
blur instances.

• Improved self intersection avoidance for flat curves. Transparency rays
with tnear set to previous hit distance do not need curve radius based self
intersection avoidance as same hit is calculated again. For this reason self
intersection avoidance is now only applied to ray origin.

1.3.36 NewFeatures in Embree 3.1.0
• Added new normal-oriented curve primitive for ray tracing of grass-like
structures.

• Added new grid primitive for ray tracing tessellated and displaced surfaces
in very memory efficient manner.

• Fixed bug of ribbon curve intersector when derivative was zero.
• Installing all static libraries when EMBREE_STATIC_LIB is enabled.
• Added API functions to access topology of subdivision mesh.
• Reduced memory consumption of instances.
• Improved performance of instances by 8%.
• Reduced memory consumption of curves by up to 2x.

Intel® EmbreeOverview 14

• Up to 5% higher performance on AVX-512 architectures.
• Added native support formultiple curve basis functions. Internal basis con-
versions are no longer performed, which saves additional memory when
multiple bases are used.

• Fixed issuewith non thread safe local static variable initialization in VS2013.
• Bugfix in rtcSetNewGeometry. Vertex buffers did not get properly overal-
located.

• Replaced ImageMagick with OpenImageIO in the tutorials.

1.3.37 NewFeatures in Embree 3.0.0
• Switched to a new version of the API which provides improved flexibility
but is not backward compatible. Please see “Upgrading from Embree 2
to Embree 3” section of the documentation for upgrade instructions. In
particular, we provide a Python script that performs most of the transition
work.

• User geometries inside an instanced scene and a top-level scene no longer
need to handle the instID field of the ray differently. They both just need
to copy the context.instID into the ray.instID field.

• Support for context filter functions that can be assigned to a ray query.
• User geometries can now invoke filter functions using the rtcFilterInter-
section and rtcFilterOcclusion calls.

• Higher flexibility through specifying build quality per scene and geometry.
• Geometry normal uses commonly used right-hand rule from now on.
• Added self-intersection avoidance to ribbon curves and lines. Applications
do not have to implement self-intersection workarounds for these primi-
tive types anymore.

• Added support for 4 billion primitives in a single scene.
• Removed the RTC_MAX_USER_VERTEX_BUFFERS and RTC_MAX_INDEX_BUFFERS
limitations.

• Reduced memory consumption by 192 bytes per instance.
• Fixed some performance issues on AVX-512 architectures.
• Individual Contributor License Agreement (ICLA) and Corporate Contrib-
utor License Agreement (CCLA) no longer required to contribute to the
project.

1.3.38 NewFeatures in Embree 2.17.5

• Improved watertightness of robust mode.
• Fixed floating point exception in static variable initialization.
• Fixed AVX512 compile issue with GCC 6.1.1.

1.3.39 NewFeatures in Embree 2.17.4
• Fixed AVX512 compile issue with GCC 7.
• Fixed issuewith not thread safe local static variable initialization in VS2013.
• Fixed bug in the 4 and 8-wide packet intersection of instances with multi-
segment motion blur on AVX-512 architectures.

• Fixed bug in rtcOccluded4/8/16 when only AVX-512 ISA was enabled.

1.3.40 NewFeatures in Embree 2.17.3
• Fixed GCC compile warning in debug mode.
• Fixed bug of ribbon curve intersector when derivative was zero.
• Installing all static libraries when EMBREE_STATIC_LIB is enabled.

Intel® EmbreeOverview 15

1.3.41 NewFeatures in Embree 2.17.2
• Made BVH build of curve geometry deterministic.

1.3.42 NewFeatures in Embree 2.17.1

• Improved performance of occlusion ray packets by up to 50%.
• Fixed detection of Clang for CMake 3 under MacOSX
• Fixed AVX code compilation issue with GCC 7 compiler caused by explicit
use of vzeroupper intrinsics.

• Fixed an issue where Clang address sanitizer reported an error in the in-
ternal tasking system.

• Added fix to compile on 32 bit Linux distribution.
• Fixed some wrong relative include paths in Embree.
• Improved performance of robust single ray mode by 5%.
• Added EMBREE_INSTALL_DEPENDENCIES option (default OFF) to en-
able installing of Embree dependencies.

• Fixed performance regression for occlusion ray streams.
• Reduced temporary memory requirements of BVH builder for curves and
line segments.

• Fixed performance regression for user geometries and packet ray tracing.
• Fixed bug where wrong closest hit was reported for very curvy hair seg-
ment.

1.3.43 NewFeatures in Embree 2.17.0

• Improved packet ray tracing performance for coherent rays by 10-60% (re-
quires RTC_INTERSECT_COHERENT flag).

• Improved ray tracing performance for incoherent rays on AVX-512 archi-
tectures by 5%.

• Improved ray tracing performance for streams of incoherent rays by 5-15%.
• Fixed tbb_debug.lib linking error under Windows.
• Fast coherent ray stream and packet code paths now also work in robust
mode.

• Using less aggressive prefetching for large BVH nodes which results in
1-2% higher ray tracing performance.

• Precompiled binaries have stack-protector enabled, except for traversal
kernels. BVH builders can be slightly slower due to this change. If you
want stack-protectors disabled please turn off EMBREE_STACK_PROTECTOR
in cmake and build the binaries yourself.

• When enabling ISAs individually, the 8-wide BVH was previously only
available when the AVX ISA was also selected. This issue is now fixed,
and one can enable only AVX2 and still get best performance by using an
8-wide BVH.

• Fixed rtcOccluded1 and rtcOccluded1Ex API functions which were broken
in Intel® ISPC.

• Providing MSI installer for Windows.

1.3.44 NewFeatures in Embree 2.16.5
• Bugfix in the robust triangle intersector that rarely caused NaNs.
• Fixed bug in hybrid traversal kernel when BVH leaf was entered with no
active rays. This rarely caused crashes when used with instancing.

• Fixed bug introduced in Embree 2.16.2 which caused instancing not to
work properly when a smaller than the native SIMD width was used in
ray packet mode.

Intel® EmbreeOverview 16

• Fixed bug in the curve geometry intersector that caused rendering artefacts
for Bézier curves with p0=p1 and/or p2=p3.

• Fixed bug in the curve geometry intersector that caused hit results with
NaNs to be reported.

• Fixed masking bug that caused rare cracks in curve geometry.
• Enabled support for SSE2 in precompiled binaries again.

1.3.45 NewFeatures in Embree 2.16.4
• Bugfix in the ribbon intersector for hair primitives. Non-normalized rays
caused wrong intersection distance to be reported.

1.3.46 NewFeatures in Embree 2.16.3
• Increased accuracy for handling subdivision surfaces. This fixes cracks
when using displacement mapping but reduces performance at irregular
vertices.

• Fixed a bug where subdivision geometry was not properly updated when
modifying only the tessellation rate and vertex array.

1.3.47 NewFeatures in Embree 2.16.2
• Fixed bug that caused NULL ray query context in intersection filter when
instancing was used.

• Fixed an issue where uv’s where outside the triangle (or quad) for very
small triangles (or quads). In robust mode we improved the uv calculation
to avoid that issue, in fast mode we accept that inconsistency for better
performance.

• Changed UV encoding for non-quad subdivision patches to allow a sub-
patch UV range of [-0.5,1.5[. Using this new encoding one can use
finite differences to calculate derivatives if required. Please adjust your
code in case you rely on the old encoding.

1.3.48 NewFeatures in Embree 2.16.1
• Workaround for compile issues with Visual Studio 2017
• Fixed bug in subdiv code for static scenes when using tessellation levels
larger than 50.

• Fixed low performance when adding many geometries to a scene.
• Fixed high memory consumption issue when using instances in dynamic
scene (by disabling two level builder for user geometries and instances).

1.3.49 NewFeatures in Embree 2.16.0
• Improved multi-segment motion blur support for scenes with different
number of time steps per mesh.

• New top level BVH builder that improves build times and BVH quality of
two-level BVHs.

• Added support to enable only a single ISA. Previously code was always
compiled for SSE2.

• Improved single ray tracing performance for incoherent rays on AVX-512
architectures by 5-10%.

• Improved packet/hybrid ray tracing performance for incoherent rays on
AVX-512 architectures by 10-30%.

• Improved stream ray tracing performance for coherent rays in structure-
of-pointers layout by 40-70%.

Intel® EmbreeOverview 17

• BVH builder for compact scenes of triangles and quads needs essentially
no temporary memory anymore. This doubles the maximal scene size that
can be rendered in compact mode.

• Triangles no longer store the geometry normal in fast/default mode which
reduces memory consumption by up to 20%.

• Compact mode uses BVH4 now consistently which reduces memory con-
sumption by up to 10%.

• Reduced memory consumption for small scenes (of 10k-100k primitives)
and dynamic scenes.

• Improved performance of user geometries and instances through BVH8
support.

• The API supports now specifying the geometry ID of a geometry at con-
struction time. This way matching the geometry ID used by Embree and
the application is simplified.

• Fixed a bug that would have caused a failure of the BVH builder for dy-
namic scenes when run on a machine with more then 1000 threads.

• Fixed a bug that could have been triggered when reaching the maximal
number of mappings under Linux (vm.max_map_count). This could have
happened when creating a large number of small static scenes.

• Added huge page support for Windows and MacOSX (experimental).
• Added support for Visual Studio 2017.
• Removed support for Visual Studio 2012.
• Precompiled binaries now require a CPU supporting at least the SSE4.2
ISA.

• We no longer provide precompiled binaries for 32-bit on Windows.
• Under Windows one now has to use the platform toolset option in CMake
to switch to Clang or the Intel® Compiler.

• Fixed a bug for subdivision meshes when using the incoherent scene flag.
• Fixed a bug in the line geometry intersection, that caused reporting an
invalid line segment intersection with primID -1.

• Buffer stride for vertex buffers of different time steps of triangle and quad
meshes have to be identical now.

• Fixed a bug in the curve geometry intersection code when passed a perfect
cylinder.

1.3.50 NewFeatures in Embree 2.15.0
• Added rtcCommitJoin mode that allows thread to join a build operation.
When using the internal tasking system this allows Embree to solely use
the threads that called rtcCommitJoin to build the scene, while previously
also normal worker threads participated in the build. You should no longer
use rtcCommit to join a build.

• Added rtcDeviceSetErrorFunction2 API call, which sets an error call-
back function which additionally gets passed a user provided pointer
(rtcDeviceSetErrorFunction is now deprecated).

• Added rtcDeviceSetMemoryMonitorFunction2 API call, which sets a
memory monitor callback function which additionally get passed a user
provided pointer. (rtcDeviceSetMemoryMonitorFunction is now depre-
cated).

• Build performance for hair geometry improved by up to 2×.
• Standard BVH build performance increased by 5%.
• Added API extension to use internal Morton-code based builder, the stan-
dard binned-SAH builder, and the spatial split-based SAH builder.

• Added support for BSpline hair and curves. Embree uses either the Bézier
or BSpline basis internally, and converts other curves, which requires more
memory during rendering. For reduced memory consumption set the EM-

Intel® EmbreeOverview 18

BREE_NATIVE_SPLINE_BASIS to the basis your application uses (which is
set to BEZIER by default).

• Setting the number of threads through tbb::taskscheduler_init object
on the application side is now working properly.

• Windows and Linux releases are build using AVX-512 support.
• Implemented hybrid traversal for hair and line segments for improved ray
packet performance.

• AVX-512 code compiles with Clang 4.0.0
• Fixed crash when ray packets were disabled in CMake.

1.3.51 NewFeatures in Embree 2.14.0
• Added ignore_config_files option to init flags that allows the applica-
tion to ignore Embree configuration files.

• Face-varying interpolation is now supported for subdivision surfaces.
• Up to 16 user vertex buffers are supported for vertex attribute interpola-
tion.

• Deprecated rtcSetBoundaryMode function, please use the new rtcSet-
SubdivisionMode function.

• Added RTC_SUBDIV_PIN_BOUNDARY mode for handling boundaries of sub-
division meshes.

• Added RTC_SUBDIV_PIN_ALLmode to enforce linear interpolation for sub-
division meshes.

• Optimized object generation performance for dynamic scenes.
• Reduced memory consumption when using lots of small dynamic objects.
• Fixed bug for subdivision surfaces using low tessellation rates.
• Hair geometry now uses a new ribbon intersector that intersects with ray-
facing quads. The new intersector also returns the v-coordinate of the hair
intersection, and fixes artefacts at junction points between segments, at the
cost of a small performance hit.

• Added rtcSetBuffer2 function, that additionally gets the number of el-
ements of a buffer. In dynamic scenes, this function allows to quickly
change buffer sizes, making it possible to change the number of primitives
of a mesh or the number of crease features for subdivision surfaces.

• Added simple ‘viewer_anim’ tutorial for rendering key frame animations
and ‘buildbench’ for measuring BVH (re-)build performance for static and
dynamic scenes.

• Added more AVX-512 optimizations for future architectures.

1.3.52 NewFeatures in Embree 2.13.0
• Improved performance for compact (but not robust) scenes.
• Added robust mode for motion blurred triangles and quads.
• Added fast dynamic mode for user geometries.
• Up to 20% faster BVH build performance on the second generation Intel®
Xeon Phi™ processor codenamed Knights Landing.

• Improved quality of the spatial split builder.
• Improved performance for coherent streams of ray packets (SOA layout),
e.g. for fast primary visibility.

• Various bug fixes in tessellation cache, quad-based spatial split builder, etc.

1.3.53 NewFeatures in Embree 2.12.0
• Added support for multi-segment motion blur for all primitive types.
• API support for stream of pointers to single rays (rtcIntersect1Mp and
rtcOccluded1Mp)

Intel® EmbreeOverview 19

• Improved BVH refitting performance for dynamic scenes.
• Improved high-quality mode for quads (added spatial split builder for
quads)

• Faster dynamic scenes for triangle and quad-based meshes on AVX2 en-
abled machines.

• Performance and correctness bugfix in optimization for streams of coher-
ent (single) rays.

• Fixed large memory consumption (issue introduced in Embree v2.11.0). If
you use Embree v2.11.0 please upgrade to Embree v2.12.0.

• Reducedmemory consumption for dynamic scenes containing smallmeshes.
• Added support to start and affinitize Intel® TBB worker threads by passing
“start_threads=1,set_affinity=1” to rtcNewDevice. These settings
are recommended on systems with a high thread count.

• rtcInterpolate2 can now be called within a displacement shader.
• Added initial support for Microsoft’s Parallel Pattern Library (PPL) as task-
ing system alternative (for optimal performance Intel® TBB is highly rec-
ommended).

• Updated to Intel® TBB 2017 which is released under the Apache v2.0 li-
cense.

• Dropped support for Visual Studio 2012 Win32 compiler. Visual Studio
2012 x64 is still supported.

1.3.54 NewFeatures in Embree 2.11.0
• Improved performance for streams of coherent (single) rays flagged with
RTC_INTERSECT_COHERENT. For such coherent ray streams, e.g. primary
rays, the performance typically improves by 1.3-2×.

• New spatial split BVH builder for triangles, which is 2-6× faster than the
previous version and more memory conservative.

• Improved performance and scalability of all standard BVH builders on sys-
tems with large core counts.

• Fixed rtcGetBounds for motion blur scenes.
• Thread affinity is now on by default when running on the latest Intel®
Xeon Phi™ processor.

• Added AVX-512 support for future Intel® Xeon processors.

1.3.55 NewFeatures in Embree 2.10.0

• Added a new curve geometry which renders the sweep surface of a circle
along a Bézier curve.

• Intersection filters can update the tfar ray distance.
• Geometry types can get disabled at compile time.
• Modified and extended the ray stream API.
• Added new callback mechanism for the ray stream API.
• Improved ray stream performance (up to 5-10%).
• Up to 20% faster morton builder on machines with large core counts.
• Lots of optimizations for the second generation Intel® Xeon Phi™ proces-
sor codenamed Knights Landing.

• Added experimental support for compressed BVHnodes (reduces node size
to 56-62% of uncompressed size). Compression introduces a typical perfor-
mance overhead of ~10%.

• Bugfix in backface culling mode. We do now properly cull the backfaces
and not the frontfaces.

• Feature freeze for the first generation Intel® Xeon Phi™ coprocessor code-
named Knights Corner. We will still maintain and add bug fixes to Embree
v2.9.0, but Embree 2.10 and future versions will no longer support it.

Intel® EmbreeOverview 20

1.3.56 NewFeatures in Embree 2.9.0
• Improved shadow ray performance (10-100% depending on the scene).
• Added initial support for ray streams (10-30% higher performance depend-
ing on ray coherence in the stream).

• Added support to calculate second order derivatives using the rtcInter-
polate2 function.

• Changed the parametrization for triangular subdivision faces to the same
scheme used for pentagons.

• Added support to query the Embree configuration using the rtcDeviceGet-
Parameter function.

1.3.57 NewFeatures in Embree 2.8.1
• Added support for setting per geometry tessellation rate (supported for
subdivision and Bézier geometries).

• Added support for motion blurred instances.

1.3.58 NewFeatures in Embree 2.8.0
• Added support for line segment geometry.
• Added support for quad geometry (replaces triangle-pairs feature).
• Added support for linear motion blur of user geometries.
• Improved performance through AVX-512 optimizations.
• Improved performance of lazy scene build (when using Intel® TBB 4.4 up-
date 2).

• Improved performance through huge page support under linux.

1.3.59 NewFeatures in Embree 2.7.1
• Internal tasking system supports cancellation of build operations.
• Intel® ISPC mode for robust and compact scenes got significantly faster
(implemented hybrid traversal for bvh4.triangle4v and bvh4.triangle4i).

• Hair rendering got faster as we fixed some issues with the SAH heuristic
cost factors.

• BVH8 got slight faster for single ray traversal (improved sorting when hit-
ting more than 4 boxes).

• BVH build performance got up to 30% faster on CPUswith high core counts
(improved parallel partition code).

• High quality build mode again working properly (spatial splits had been
deactivated in v2.7.0 due to some bug).

• Support for merging two adjacent triangles sharing a common edge into a
triangle-pair primitive (can reduce memory consumption and BVH build
times by up to 50% for mostly quad-based input meshes).

• Internal cleanups (reduced number of traversal kernels by more templat-
ing).

• Reduced stack size requirements of BVH builders.
• Fixed crash for dynamic scenes, triggered by deleting all geometries from
the scene.

1.3.60 NewFeatures in Embree 2.7.0
• Added device concept to Embree to allow different components of an ap-
plication to use Embree without interfering with each other.

• Fixed memory leak in twolevel builder used for dynamic scenes.
• Fixed bug in tessellation cache that caused crashes for subdivision surfaces.

Intel® EmbreeOverview 21

• Fixed bug in internal task scheduler that caused deadlocks when using
rtcCommitThread.

• Improved hit-distance accuracy for thin triangles in robust mode.
• Added support to disable ray packet support in cmake.

1.3.61 NewFeatures in Embree 2.6.2
• Fixed bug triggered by instantiating motion blur geometry.
• Fixed bug in hit UV coordinates of static subdivision geometries.
• Performance improvements when only changing tessellation levels for sub-
division geometry per frame.

• Added ray packet intersectors for subdivision geometry, resulting in im-
proved performance for coherent rays.

• Reduced virtual address space usage for static geometries.
• Fixed some AVX2 code paths when compiling with GCC or Clang.
• Bugfix for subdiv patches with non-matching winding order.
• Bugfix in ISA detection of AVX-512.

1.3.62 NewFeatures in Embree 2.6.1

• Major performance improvements for ray tracing subdivision surfaces,
e.g. up to 2× faster for scenes where only the tessellation levels are chang-
ing per frame, and up to 3× faster for scenes with lots of crease features

• Initial support for architectures supporting the new 16-wide AVX-512 ISA
• Implemented intersection filter callback support for subdivision surfaces
• Added RTC_IGNORE_INVALID_RAYS CMake option which makes the ray
intersectors more robust against full tree traversal caused by invalid ray
inputs (e.g. INF, NaN, etc)

1.3.63 NewFeatures in Embree 2.6.0
• Added rtcInterpolate function to interpolate per vertex attributes
• Added rtcSetBoundaryMode function that can be used to select the bound-
ary handling for subdivision surfaces

• Fixed a traversal bug that caused rays with very small ray direction com-
ponents to miss geometry

• Performance improvements for the robust traversal mode
• Fixed deadlock when calling rtcCommit from multiple threads on same
scene

1.3.64 NewFeatures in Embree 2.5.1
• On dual socket workstations, the initial BVH build performance almost
doubled through a better memory allocation scheme

• Reduced memory usage for subdivision surface objects with crease fea-
tures

• rtcCommit performance is robust against unset “flush to zero” and “denor-
mals are zero” flags. However, enabling these flags in your application is
still recommended

• Reduced memory usage for subdivision surfaces with borders and in-
finitely sharp creases

• Lots of internal cleanups and bug fixes for both Intel® Xeon® and Intel®
Xeon Phi™

Intel® EmbreeOverview 22

1.3.65 NewFeatures in Embree 2.5.0
• Improved hierarchy build performance on both Intel Xeon and Intel Xeon
Phi

• Vastly improved tessellation cache for ray tracing subdivision surfaces
• Added rtcGetUserData API call to query per geometry user pointer set
through rtcSetUserData

• Added support for memory monitor callback functions to track and limit
memory consumption

• Added support for progress monitor callback functions to track build
progress and cancel long build operations

• BVH builders can be used to build user defined hierarchies inside the ap-
plication (see tutorial BVH Builder)

• Switched to Intel® TBB as default tasking system onXeon to get even faster
hierarchy build times and better integration for applications that also use
Intel® TBB

• rtcCommit can get called from multiple Intel® TBB threads to join the
hierarchy build operations

1.3.66 NewFeatures in Embree 2.4
• Support for Catmull Clark subdivision surfaces (triangle/quad base primi-
tives)

• Support for vector displacements on Catmull Clark subdivision surfaces
• Various bug fixes (e.g. 4-byte alignment of vertex buffers works)

1.3.67 NewFeatures in Embree 2.3.3
• BVH builders more robustly handle invalid input data (Intel Xeon proces-
sor family)

• Motion blur support for hair geometry (Xeon)
• Improved motion blur performance for triangle geometry (Xeon)
• Improved robust ray tracing mode (Xeon)
• Added rtcCommitThread API call for easier integration into existing task-
ing systems (Xeon and Intel Xeon Phi coprocessor)

• Added support for recording and replaying all rtcIntersect/rtcOccluded
calls (Xeon and Xeon Phi)

1.3.68 NewFeatures in Embree 2.3.2
• Improved mixed AABB/OBB-BVH for hair geometry (Xeon Phi)
• Reduced amount of pre-allocated memory for BVH builders (Xeon Phi)
• New 64-bit Morton code-based BVH builder (Xeon Phi)
• (Enhanced) Morton code-based BVH builders use now tree rotations to
improve BVH quality (Xeon Phi)

• Bug fixes (Xeon and Xeon Phi)

1.3.69 NewFeatures in Embree 2.3.1
• High quality BVH mode improves spatial splits which result in up to 30%
performance improvement for some scenes (Xeon)

• Compile time enabled intersection filter functions do not reduce perfor-
mance if no intersection filter is used in the scene (Xeon and Xeon Phi)

• Improved ray tracing performance for hair geometry by >20% on Xeon Phi.
BVH for hair geometry requires 20% less memory

• BVH8 for AVX/AVX2 targets improves performance for single ray tracing
on Haswell by up to 12% and by up to 5% for hybrid (Xeon)

Intel® EmbreeOverview 23

• Memory conservative BVH for Xeon Phi now uses BVH node quantiza-
tion to lower memory footprint (requires half the memory footprint of the
default BVH)

1.3.70 NewFeatures in Embree 2.3
• Support for ray tracing hair geometry (Xeon and Xeon Phi)
• Catching errors through error callback function
• Faster hybrid traversal (Xeon and Xeon Phi)
• New memory conservative BVH for Xeon Phi
• Faster Morton code-based builder on Xeon
• Faster binned-SAH builder on Xeon Phi
• Lots of code cleanups/simplifications/improvements (Xeon and Xeon Phi)

1.3.71 NewFeatures in Embree 2.2
• Support for motion blur on Xeon Phi
• Support for intersection filter callback functions
• Support for buffer sharing with the application
• Lots of AVX2 optimizations, e.g. ~20% faster 8-wide hybrid traversal
• Experimental support for 8-wide (AVX/AVX2) and 16-wide BVHs (Xeon
Phi)

1.3.72 NewFeatures in Embree 2.1
• New future proof API with a strong focus on supporting dynamic scenes
• Lots of optimizations for 8-wide AVX2 (Haswell architecture)
• Automatic runtime code selection for SSE, AVX, and AVX2
• Support for user-defined geometry
• New and improved BVH builders:

– Fast adaptive Morton code-based builder (without SAH-based top-
level rebuild)

– Both the SAH and Morton code-based builders got faster (Xeon Phi)
– New variant of the SAH-based builder using triangle pre-splits (Xeon

Phi)

1.3.73 NewFeatures in Embree 2.0
• Support for the Intel® Xeon Phi™ coprocessor platform
• Support for high-performance “packet” kernels on SSE, AVX, and Xeon Phi
• Integration with the Intel® Implicit SPMD Program Compiler (Intel® ISPC)
• Instantiation and fast BVH reconstruction
• Example photo-realistic rendering engine for both C++ and Intel® ISPC

24

Chapter 2

Installation of Embree

2.1 Windows Installation

A pre-built version of Embree for Windows is provided as a ZIP archive embree-
4.4.0.x64.windows.zip. After unpacking this ZIP file, you should set the path to
the lib folder manually to your PATH environment variable for applications to
find Embree.

2.2 Linux Installation

A pre-built version of Embree for Linux is provided as a tar.gz archive: embree-
4.4.0.x86_64.linux.tar.gz. Unpack this file using tar and source the provided
embree-vars.sh (if you are using the bash shell) or embree-vars.csh (if you
are using the C shell) to set up the environment properly:

tar xzf embree-4.4.0.x86_64.linux.tar.gz
source embree-4.4.0.x86_64.linux/embree-vars.sh

We recommend adding a relative RPATH to your application that points to the
location where Embree (and TBB) can be found, e.g. $ORIGIN/../lib.

2.3 macOS Installation

ThemacOS version of Embree is also delivered as a ZIP file: embree-4.4.0.x86_64.macosx.zip.
Unpack this file using tar and source the provided embree-vars.sh (if you are
using the bash shell) or embree-vars.csh (if you are using the C shell) to set up
the environment properly:

unzip embree-4.4.0.x64.macosx.zip source embree-4.4.0.x64.macosx/embree-vars.sh

If you want to ship Embree with your application, please use the Embree
library of the provided ZIP file. The library name of that Embree library is of
the form @rpath/libembree.4.dylib (and similar also for the included TBB
library). This ensures that you can add a relative RPATH to your application that
points to the locationwhere Embree (and TBB) can be found, e.g. @loader_path/
../lib.

https://github.com/embree/embree/releases/download/v4.4.0/embree-4.4.0.x64.windows.zip
https://github.com/embree/embree/releases/download/v4.4.0/embree-4.4.0.x64.windows.zip
https://github.com/embree/embree/releases/download/v4.4.0/embree-4.4.0.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v4.4.0/embree-4.4.0.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v4.4.0/embree-4.4.0.x86_64.macosx.zip

Installation of Embree 25

2.4 Building EmbreeApplications

The most convenient way to build an Embree application is through CMake. Just
let CMake find your unpacked Embree package using the FIND_PACKAGE func-
tion inside your CMakeLists.txt file:

FIND_PACKAGE(embree 4 REQUIRED)

For CMake to properly find Embree you need to set the embree_DIR variable
to the folder containing the embree_config.cmake file. You might also have to
set the TBB_DIR variable to the path containing TBB-config.cmake of a local
TBB install, in case you do not have TBB installed globally on your system, e.g:

cmake -D embree_DIR=path_to_embree_package/lib/cmake/embree-4.4.0/ \
-D TBB_DIR=path_to_tbb_package/lib/cmake/tbb/ \
..

The FIND_PACKAGE function will create an embree target that you can add
to your target link libraries:

TARGET_LINK_LIBRARIES(application embree)

For a full example on how to build an Embree application please have a look
at the minimal tutorial provided in the src folder of the Embree package and
also the contained README.txt file.

2.5 Building Embree SYCLApplications

Building Embree SYCL applications is also best done using CMake. Please first
get some compatible SYCL compiler and setup the environment as decribed in
sections Linux SYCL Compilation and Windows SYCL Compilation.

Also perform the setup steps from the previous Building Embree Applications
section.

Please also have a look at the Minimal tutorial that is provided with the Em-
bree release, for an example how to build a simple SYCL application using CMake
and Embree.

To properly compile your SYCL application you have to add additional SYCL
compile flags for each C++ file that contains SYCL device side code or kernels as
described next.

2.5.1 JITCompilation
We recommend using just in time compilation (JIT compilation) together with
[SYCL JIT caching] to compile Embree SYCL applications. For JIT compilation
add these options to the compilation phase of all C++ files that contain SYCL
code:

-fsycl -Xclang -fsycl-allow-func-ptr -fsycl-targets=spir64

These options enable SYCL two phase compilation (-fsycl option), enable
function pointer support (-Xclang -fsycl-allow-func-ptr option), and just
in time (JIT) compilation only (-fsycl-targets=spir64 option).

The following link options have to get added to the linking stage of your
application when using just in time compilation:

-fsycl -fsycl-targets=spir64

Installation of Embree 26

For a full example on how to build an Embree SYCL application please have
a look at the SYCL version of the minimal tutorial provided in the src folder of
the Embree package and also the contained README.txt file.

Please have a look at the Compiling Embree section on how to create an
Embree package from sources if required.

2.5.2 AOTCompilation
Ahead of time compilation (AOT compilation) allows to speed up first application
start up time as device binaries are precompiled. We do not recommend using
AOT compilation as it does not allow the usage of specialization constants to
reduce code complexity.

For ahead of time compilation add these compile options to the compilation
phase of all C++ files that contain SYCL code:

-fsycl -Xclang -fsycl-allow-func-ptr -fsycl-targets=spir64_gen

These options enable SYCL two phase compilation (-fsycl option), en-
able function pointer support (-Xclang -fsycl-allow-func-ptr option), and
ahead of time (AOT) compilation (-fsycl-targets=spir64_gen option).

The following link options have to get added to the linking stage of your
application when compiling ahead of time for Xe HPG devices:

-fsycl -fsycl-targets=spir64_gen
-Xsycl-target-backend=spir64_gen "-device XE_HPG_CORE"

This in particular configures the devices for AOT compilation to XE_HPG_
CORE.

To get a list of all device supported by AOT compilation look at the help of
the device option in ocloc tool:

ocloc compile --help

2.6 Building Embree Tests

Embree is released with a bundle of tests in an optional testing package. To
run these tests extract the testing package in the same folder as your embree
installation. e.g.:

tar -xzf embree-4.4.0-testing.zip -C /path/to/installed/embree

The tests are extracted into a new folder inside you embree installation and
can be run with:

cd /path/to/installed/embree/testing
cmake -B build
cmake --build build target=tests

27

Chapter 3

Compiling Embree

We recommend using the prebuild Embree packages from https://github.
com/embree/embree/releases. If you need to compile Embree yourself you
need to use CMake as described in the following.

Do not enable fast-math optimizations in your compiler as this mode is not
supported by Embree.

3.1 Linux andmacOS

To compile Embree you need a modern C++ compiler that supports C++11. Em-
bree is tested with the following compilers:

Linux

• Intel® oneAPI DPC++/C++ Compiler 2024.0.2
• oneAPI DPC++/C++ Compiler 2023-10-26
• Clang 5.0.0
• Clang 4.0.0
• GCC 10.0.1 (Fedora 32) AVX512 support
• GCC 8.3.1 (Fedora 29) AVX512 support
• Intel® Implicit SPMD Program Compiler 1.22.0

macOS x86_64

• Apple Clang 15

macOS Arm64

• Apple Clang 14

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend using
Embree with the Intel® Threading Building Blocks (TBB) and best also use TBB
inside your application. Optionally you can disable TBB in Embree through the
EMBREE_TASKING_SYSTEM CMake variable.

Embree supports the Intel® Implicit SPMD Program Compiler (Intel® ISPC),
which allows straightforward parallelization of an entire renderer. If you want to
use Intel® ISPC then you can enable EMBREE_ISPC_SUPPORT in CMake. Down-
load and install the Intel® ISPC binaries from ispc.github.io. After installation,
put the path to ispc permanently into your PATH environment variable or you
set the EMBREE_ISPC_EXECUTABLE variable to point at the ISPC executable dur-
ing CMake configuration.

You additionally have to install CMake 3.1.0 or higher and the developer ver-
sion of GLFW version 3.

Under macOS, all these dependencies can be installed using MacPorts:

https://github.com/embree/embree/releases
https://github.com/embree/embree/releases
https://ispc.github.io/downloads.html
https://www.glfw.org/
http://www.macports.org/

Compiling Embree 28

sudo port install cmake tbb glfw-devel

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel
sudo yum install glfw-devel

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install libglfw3-dev

Finally, you can compile Embree using CMake. Create a build directory inside
the Embree root directory and execute ccmake .. inside this build directory.

mkdir build
cd build
ccmake ..

Per default, CMake will use the compilers specified with the CC and CXX en-
vironment variables. Should you want to use a different compiler, run cmake
first and set the CMAKE_CXX_COMPILER and CMAKE_C_COMPILER variables to the
desired compiler. For example, to use the Clang compiler instead of the default
GCC on most Linux machines (g++ and gcc), execute

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

Running ccmake will open a dialog where you can perform various config-
urations as described below in CMake Configuration. After having configured
Embree, press c (for configure) and g (for generate) to generate a Makefile and
leave the configuration. The code can be compiled by executing make.

make -j 8

The executables will be generated inside the build folder. We recommend
installing the Embree library and header files on your system. Therefore set the
CMAKE_INSTALL_PREFIX to /usr in cmake and type:

sudo make install

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then you
have to make sure the path /usr/local/lib is in your LD_LIBRARY_PATH.

You can also uninstall Embree again by executing:

sudo make uninstall

You can also create an Embree package using the following command:

make package

Please see the Building Embree Applications section on how to build your
application with such an Embree package.

Compiling Embree 29

3.2 Linux SYCLCompilation

There are two options to compile Embree with SYCL support: The open source
“oneAPIDPC++Compiler” or the “Intel(R) oneAPIDPC++/C++Compiler”. Other
SYCL compilers are not supported.

The “oneAPI DPC++ Compiler” is more up-to-date than the “Intel(R) oneAPI
DPC++/C++ Compiler” but less stable. The current tested version of the “oneAPI
DPC++ compiler is

• oneAPI DPC++ Compiler 2023-10-26

The compiler can be downloaded and simply extracted. The oneAPI DPC++
compiler can be set up executing the following commands in a Linux (bash) shell:

export SYCL_BUNDLE_ROOT=path_to_dpcpp_compiler
export PATH=$SYCL_BUNDLE_ROOT/bin:$PATH
export CPATH=$SYCL_BUNDLE_ROOT/include:$CPATH
export LIBRARY_PATH=$SYCL_BUNDLE_ROOT/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=$SYCL_BUNDLE_ROOT/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$SYCL_BUNDLE_ROOT/linux/lib/x64:$LD_LIBRARY_PATH

where the path_to_dpcpp_compiler should point to the unpacked oneAPI
DPC++ compiler. This will put clang++ and clang from the oneAPI DPC++
Compiler into your path.

Please also install all Linux packages described in the previous section.
Now, you can configure Embree using CMake by executing the following

command in the Embree root directory:

cmake -B build \
-DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_COMPILER=clang \
-DEMBREE_SYCL_SUPPORT=ON

This will create a directory build to use as the CMake build directory, config-
ure the usage of the oneAPI DPC++ Compiler, and turn on SYCL support through
EMBREE_SYCL_SUPPORT=ON.

Alternatively, you can download and run the installer of the

• Intel(R) oneAPI DPC++/C++ Compiler.

After installation, you can set up the compiler by sourcing the vars.sh script
in the env directory of the compiler install directory, for example,

source /opt/intel/oneAPI/compiler/latest/env/vars.sh

This script will put the icpx and icx compiler executables from the Intel(R)
oneAPI DPC++/C++ Compiler in your path.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

cmake -B build \
-DCMAKE_CXX_COMPILER=icpx \
-DCMAKE_C_COMPILER=icx \
-DEMBREE_SYCL_SUPPORT=ON

More information about setting up the Intel(R) oneAPI DPC++/C++ compiler
can be found in the Development Reference Guide. Please note, that the Intel(R)
oneAPI DPC++/C++ compiler requires at least CMake version 3.20.5 on Linux.

Independent of the DPC++ compiler choice, you can now build Embree using

cmake --build build -j 8

The executables will be generated inside the build folder. The executable
names of the SYCL versions of the tutorials end with _sycl.

https://github.com/intel/llvm/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
https://github.com/intel/llvm/releases/tag/nightly-2023-10-26
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup/use-the-command-line/use-cmake-with-the-compiler.html

Compiling Embree 30

3.2.1 LinuxGraphicsDriver Installation
To run the SYCL code you need to install the latest GPGPU drivers for your Intel
Xe HPG/HPC GPUs from here https://dgpu-docs.intel.com/. Follow the
driver installation instructions for your graphics card and operating system.

After installing the drivers you have to install an additional packagemanually
using

sudo apt install intel-level-zero-gpu-raytracing

3.3 Windows

Embree is tested using the following compilers under Windows:

• Intel® oneAPI DPC++/C++ Compiler 2024.0.2
• oneAPI DPC++/C++ Compiler 2023-10-26
• Visual Studio 2022
• Visual Studio 2019
• Visual Studio 2017
• Intel® Implicit SPMD Program Compiler 1.22.0

To compile Embree for AVX-512 you have to use the Intel® Compiler.
Embree supports using the Intel® Threading Building Blocks (TBB) as the

tasking system. For performance and flexibility reasons we recommend using
use Embree with the Intel® Threading Building Blocks (TBB) and best also use
TBB inside your application. Optionally you can disable TBB in Embree through
the EMBREE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB) instal-
lation that comes with the Intel® Compiler, or you can install the binary dis-
tribution of TBB directly from https://github.com/oneapi-src/oneTBB/
releases into a folder named tbb into your Embree root directory. You also
have to make sure that the libraries tbb.dll and tbb_malloc.dll can be found
when executing your Embree applications, e.g. by putting the path to these li-
braries into your PATH environment variable.

Embree supports the Intel® Implicit SPMD Program Compiler (Intel® ISPC),
which allows straightforward parallelization of an entire renderer. When in-
stalling Intel® ISPC,make sure to download an Intel® ISPC version from ispc.github.io
that is compatible with your Visual Studio version. After installation, put the
path to ispc.exe permanently into your PATH environment variable or you
need to correctly set the EMBREE_ISPC_EXECUTABLE variable during CMake con-
figuration to point to the ISPC executable. If you want to use Intel® ISPC, you
have to enable EMBREE_ISPC_SUPPORT in CMake.

You additionally have to install CMake (version 3.1 or higher). Note that
you need a native Windows CMake installation because CMake under Cygwin
cannot generate solution files for Visual Studio.

3.3.1 Using the IDE
Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for a
32-bit build or “Visual Studio 12 2013 Win64” for a 64-bit build.

To use a different compiler than the Microsoft Visual C++ compiler, you addi-
tionally need to specify the proper compiler toolset through the option “Optional
toolset to use (-T parameter)”. E.g. to use Clang for compilation set the toolset
to “LLVM_v142”.

Do not change the toolset manually in a solution file (neither through the
project properties dialog nor through the “Use Intel Compiler” project context

https://dgpu-docs.intel.com/
https://github.com/oneapi-src/oneTBB/releases
https://github.com/oneapi-src/oneTBB/releases
https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Compiling Embree 31

menu), because then some compiler-specific command line options cannot be
set by CMake.

Most configuration parameters described in the CMake Configuration can be
set under Windows as well. Finally, click “Generate” to create the Visual Studio
solution files.

The following CMake options are only available under Windows:

• CMAKE_CONFIGURATION_TYPE: List of generated configurations. The de-
fault value is Debug;Release;RelWithDebInfo.

• USE_STATIC_RUNTIME: Use the static version of the C/C++ runtime library.
This option is turned OFF by default.

Use the generated Visual Studio solution file embree4.sln to compile the
project.

We recommend enabling syntax highlighting for the .ispc source and .isph
header files. To do so open Visual Studio, go to Tools ⇒ Options ⇒ Text Editor
⇒ File Extension and add the isph and ispc extensions for the “Microsoft Visual
C++” editor.

3.3.2 Using theCommand Line
Embree can also be configured and built without the IDE using the Visual Studio
command prompt:

cd path\to\embree
mkdir build
cd build
cmake -G "Visual Studio 16 2019" ..
cmake --build . --config Release

You can also build only some projects with the --target switch. Additional
parameters after “--” will be passed to msbuild. For example, to build the Em-
bree library in parallel use

cmake --build . --config Release --target embree -- /m

3.3.3 Building Embree - Using vcpkg
You can download and install Embree using the vcpkg dependency manager:

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install embree3

The Embree port in vcpkg is kept up to date by Microsoft team members and
community contributors. If the version is out of date, please create an issue or
pull request on the vcpkg repository.

https://github.com/Microsoft/vcpkg
https://github.com/Microsoft/vcpkg
https://github.com/Microsoft/vcpkg

Compiling Embree 32

3.4 Windows SYCLCompilation

There are two options to compile Embree with SYCL support: The open source
“oneAPIDPC++Compiler” or the “Intel(R) oneAPIDPC++/C++Compiler”. Other
SYCL compilers are not supported. You will also need an installed version of Vi-
sual Studio that supports the C++17 standard, e.g. Visual Studio 2019.

The “oneAPI DPC++ Compiler” is more up-to-date than the “Intel(R) oneAPI
DPC++/C++ Compiler” but less stable. The current tested version of the oneAPI
DPC++ compiler is

• oneAPI DPC++ Compiler 2023-10-26

Download and unpack the archive and open the “x64 Native Tools Command
Prompt” of Visual Studio and execute the following lines to properly configure
the environment to use the oneAPI DPC++ compiler:

set "DPCPP_DIR=path_to_dpcpp_compiler"
set "PATH=%DPCPP_DIR%\bin;%PATH%"
set "PATH=%DPCPP_DIR%\lib;%PATH%"
set "CPATH=%DPCPP_DIR%\include;%CPATH%"
set "INCLUDE=%DPCPP_DIR%\include;%INCLUDE%"
set "LIB=%DPCPP_DIR%\lib;%LIB%"

The path_to_dpcpp_compiler should point to the unpacked oneAPI DPC++
compiler.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

cmake -B build
-G Ninja
-D CMAKE_BUILD_TYPE=Release
-D CMAKE_CXX_COMPILER=clang++
-D CMAKE_C_COMPILER=clang
-D EMBREE_SYCL_SUPPORT=ON
-D TBB_ROOT=path_to_tbb\lib\cmake\tbb

This will create a directory build to use as the CMake build directory, and
configure a release build that uses clang++ and clang from the oneAPI DPC++
compiler.

The Ninja generator is currently the easiest way to use the oneAPI DPC++
compiler.

We also enable SYCL support in Embree using the EMBREE_SYCL_SUPPORT
CMake option.

Alternatively, you can download and run the installer of the

• Intel(R) oneAPI DPC++/C++ Compiler.

After installation, you can either open a regular Command Prompt and exe-
cute the vars.bat script in the env directory of the compiler install directory,
for example

C:\Program Files (x86)\Intel\oneAPI\compiler\latest\env\vars.bat

or simply open the installed “Intel oneAPI command prompt for Intel 64 for
Visual Studio”.

Both ways will put the icx compiler executable from the Intel(R) oneAPI
DPC++/C++ compiler in your path.

Now, you can configure Embree using CMake by executing the following
command in the Embree root directory:

https://github.com/intel/llvm/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
https://github.com/intel/llvm/releases/tag/nightly-2023-10-26
https://ninja-build.org/
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp

Compiling Embree 33

cmake -B build
-G Ninja
-D CMAKE_BUILD_TYPE=Release
-D CMAKE_CXX_COMPILER=icx
-D CMAKE_C_COMPILER=icx
-D EMBREE_SYCL_SUPPORT=ON
-D TBB_ROOT=path_to_tbb\lib\cmake\tbb

More information about setting up the Intel(R) oneAPI DPC++/C++ compiler
can be found in the Development Reference Guide. Please note, that the Intel(R)
oneAPI DPC++/C++ compiler requires at least CMake version 3.23 on Windows.

Independent of the DPC++ compiler choice, you can now build Embree using

cmake --build build

If you have problems with Ninja re-running CMake in an infinite loop, then
first remove the “Re-run CMake if any of its inputs changed.” section from the
build.ninja file and run the above command again.

You can also create an Embree package using the following command:

cmake --build build --target package

Please see the Building Embree SYCL Applications section on how to build
your application with such an Embree package.

3.4.1 WindowsGraphicsDriver Installation

In order to run the SYCL tutorials on HPG hardware, you first need to install the
graphics drivers for your graphics card from https://www.intel.com. Please
make sure to have installed version 31.0.101.4644 or newer.

3.5 CMakeConfiguration

The default CMake configuration in the configuration dialog should be appro-
priate for most usages. The following list describes all parameters that can be
configured in CMake:

• CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Releasemode (Release) (default), and Releasemodewith enabled assertions
and debug symbols (RelWithDebInfo).

• EMBREE_STACK_PROTECTOR: Enables protection of return address from
buffer overwrites. This option is OFF by default.

• EMBREE_ISPC_SUPPORT: Enables Intel® ISPC support of Embree. This op-
tion is OFF by default.

• EMBREE_SYCL_SUPPORT: Enables GPU support using SYCL. When this op-
tion is enabled you have to use some DPC++ compiler. Please see the
sections Linux SYCL Compilation andWindows SYCL Compilation on sup-
ported DPC++ compilers. This option is OFF by default.

• EMBREE_SYCL_AOT_DEVICES: Selects a list of GPU devices for ahead-of-
time (AOT) compilation of device code. Possible values are either, “none”
which enables only just in time (JIT) compilation, or a list of the Embree-
supported Xe GPUs for AOT compilation:

– XE_HPG_CORE : Xe HPG devices
– XE_HPC_CORE : Xe HPC devices

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-setup/use-the-command-line/use-cmake-with-the-compiler.html
https://www.intel.com

Compiling Embree 34

One can also specify multiple devices separated by comma to compile
ahead of time for multiple devices, e.g. “XE_HPG_CORE,XE_HP_CORE”.
When enabling AOT compilation for one or multiple devices, JIT compila-
tion will always additionally be enabled in case the code is executed on a
device no code is precompiled for.
Execute “ocloc compile –help” for more details of possible devices to pass.
Embree is only supported on Xe HPG/HPC and newer devices.
Per default, this option is set to “none” to enable JIT compilation. We rec-
ommend using JIT compilation as this enables the use of specialization
constants to reduce code complexity.

• EMBREE_STATIC_LIB: Builds Embree as a static library (OFF by default).
Further multiple static libraries are generated for the different ISAs se-
lected (e.g. embree4.a, embree4_sse42.a, embree4_avx.a, embree4_
avx2.a, embree4_avx512.a). You have to link these libraries in exactly
this order of increasing ISA.

• EMBREE_API_NAMESPACE: Specifies a namespace name to put all Embree
API symbols inside. By default, no namespace is used and plain C symbols
are exported.

• EMBREE_LIBRARY_NAME: Specifies the name of the Embree library file cre-
ated. By default, the name embree4 is used.

• EMBREE_IGNORE_CMAKE_CXX_FLAGS: When enabled, Embree ignores de-
fault CMAKE_CXX_FLAGS. This option is turned ON by default.

• EMBREE_TUTORIALS: Enables build of Embree tutorials (default ON).

• EMBREE_BACKFACE_CULLING: Enables backface culling, i.e. only surfaces
facing a ray can be hit. This option is turned OFF by default.

• EMBREE_BACKFACE_CULLING_CURVES: Enables backface culling for curves,
i.e. only surfaces facing a ray can be hit. This option is turned OFF by
default.

• EMBREE_BACKFACE_CULLING_SPHERES: Enables backface culling for spheres,
i.e. only surfaces facing a ray can be hit. This option is turned OFF by de-
fault.

• EMBREE_COMPACT_POLYS: Enables compact tris/quads, i.e. only geomIDs
and primIDs are stored inside the leaf nodes.

• EMBREE_FILTER_FUNCTION: Enables the intersection filter function fea-
ture (ON by default).

• EMBREE_RAY_MASK: Enables the ray masking feature (OFF by default).

• EMBREE_RAY_PACKETS: Enables ray packet traversal kernels. This feature
is turnedON by default. When turned on packet traversal is used internally
and packets passed to rtcIntersect4/8/16 are kept intact in callbacks (when
the ISA of appropriate width is enabled).

• EMBREE_IGNORE_INVALID_RAYS: Makes code robust against the risk of
full-tree traversals caused by invalid rays (e.g. rays containing INF/NaN
as origins). This option is turned OFF by default.

• EMBREE_TASKING_SYSTEM: Chooses between Intel® Threading TBB Build-
ing Blocks (TBB), Parallel Patterns Library (PPL) (Windows only), or an
internal tasking system (INTERNAL). By default, TBB is used.

Compiling Embree 35

• EMBREE_TBB_ROOT: If Intel® Threading Building Blocks (TBB) is used as a
tasking system, search the library in this directory tree.

• EMBREE_TBB_COMPONENT: The component/library name of Intel® Thread-
ing Building Blocks (TBB). Embree searches for this library name (default:
tbb) when TBB is used as the tasking system.

• EMBREE_TBB_POSTFIX: If Intel® Threading Building Blocks (TBB) is used
as a tasking system, link to tbb.(so,dll,lib). Defaults to the empty string.

• EMBREE_TBB_DEBUG_ROOT: If Intel® Threading Building Blocks (TBB) is
used as a tasking system, search the library in this directory tree in De-
bug mode. Defaults to EMBREE_TBB_ROOT.

• EMBREE_TBB_DEBUG_POSTFIX: If Intel® Threading Building Blocks (TBB)
is used as a tasking system, link to tbb.(so,dll,lib) in Debug mode. Defaults
to “_debug”.

• EMBREE_MAX_ISA: Select highest supported ISA (SSE2, SSE4.2, AVX, AVX2,
AVX512, or NONE). When set to NONE the EMBREE_ISA_* variables can
be used to enable ISAs individually. By default, the option is set to AVX2.

• EMBREE_ISA_SSE2: Enables SSE2when EMBREE_MAX_ISA is set toNONE.
By default, this option is turned OFF.

• EMBREE_ISA_SSE42: Enables SSE4.2 when EMBREE_MAX_ISA is set to
NONE. By default, this option is turned OFF.

• EMBREE_ISA_AVX: Enables AVXwhen EMBREE_MAX_ISA is set to NONE.
By default, this option is turned OFF.

• EMBREE_ISA_AVX2: Enables AVX2 when EMBREE_MAX_ISA is set to
NONE. By default, this option is turned OFF.

• EMBREE_ISA_AVX512: Enables AVX-512 for Skylakewhen EMBREE_MAX_ISA
is set to NONE. By default, this option is turned OFF.

• EMBREE_GEOMETRY_TRIANGLE: Enables support for triangle geometries
(ON by default).

• EMBREE_GEOMETRY_QUAD: Enables support for quad geometries (ON by de-
fault).

• EMBREE_GEOMETRY_CURVE: Enables support for curve geometries (ON by
default).

• EMBREE_GEOMETRY_SUBDIVISION: Enables support for subdivision geome-
tries (ON by default).

• EMBREE_GEOMETRY_INSTANCE: Enables support for instances (ON by de-
fault).

• EMBREE_GEOMETRY_INSTANCE_ARRAY: Enables support for instance arrays
(ON by default).

• EMBREE_GEOMETRY_USER: Enables support for user-defined geometries
(ON by default).

• EMBREE_GEOMETRY_POINT: Enables support for point geometries (ON by
default).

Compiling Embree 36

• EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR: Specifies a fac-
tor that controls the self-intersection avoidance feature for flat curves. Flat
curve intersections which are closer than curve_radius*EMBREE_CURVE_
SELF_INTERSECTION_AVOIDANCE_FACTOR to the ray origin are ignored.
A value of 0.0f disables self-intersection avoidance while 2.0f is the default
value.

• EMBREE_DISC_POINT_SELF_INTERSECTION_AVOIDANCE: Enables self-intersection
avoidance for RTC_GEOMETRY_TYPE_DISC_POINT geometry type (ON
by default). When enabled intersections are skipped if the ray origin lies
inside the sphere defined by the point primitive.

• EMBREE_MIN_WIDTH: Enabled the min-width feature, which allows increas-
ing the radius of curves and points to match some amount of pixels. See
[rtcSetGeometryMaxRadiusScale] for more details.

• EMBREE_MAX_INSTANCE_LEVEL_COUNT: Specifies the maximum number of
nested instance levels. Should be greater than 0; the default value is 1. In-
stances nested any deeper than this value will silently disappear in release
mode, and cause assertions in debug mode.

37

Chapter 4

Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how
Embree can be used and extended. There is a very basic minimal that can be
compiled as both C and C++, which should get new users started quickly. All
other tutorials exist in an Intel® ISPC and C++ version to demonstrate the two
versions of the API. Look for files named tutorialname_device.ispc for the
Intel® ISPC implementation of the tutorial, and files named tutorialname_de-
vice.cpp for the single ray C++ version of the tutorial. To start the C++ version
use the tutorialname executables, to start the Intel® ISPC version use the tu-
torialname_ispc executables. All tutorials can print available command line
options using the --help command line parameter.

For all tutorials except minimal, you can select an initial camera using the
--vp (camera position), --vi (camera look-at point), --vu (camera up vector),
and --fov (vertical field of view) command line parameters:

./triangle_geometry --vp 10 10 10 --vi 0 0 0

You can select the initial window size using the --size command line pa-
rameter, or start the tutorials in full screen using the --fullscreen parameter:

./triangle_geometry --size 1024 1024

./triangle_geometry --fullscreen

The initialization string for the Embree device (rtcNewDevice call) can be
passed to the ray tracing core through the --rtcore command line parameter,
e.g.:

./triangle_geometry --rtcore verbose=2,threads=1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest. With
the left mouse button you can rotate around the center of interest (the point
initially set with --vi). Holding Control pressed while clicking the left mouse
button rotates the camera around its location. You can also use the arrow keys
for navigation.

You can use the following keys:

F1 Default shading
F2 Gray EyeLight shading
F3 Traces occlusion rays only.
F4 UV Coordinate visualization
F5 Geometry normal visualization
F6 Geometry ID visualization
F7 Geometry ID and Primitive ID visualization

EmbreeTutorials 38

F8 Simple shading with 16 rays per pixel for benchmarking.
F9 Switches to render cost visualization. Pressing again reduces brightness.
F10 Switches to render cost visualization. Pressing again increases brightness.
f Enters or leaves full screen mode.
c Prints camera parameters.
ESC Exits the tutorial.
q Exits the tutorial.

4.1 Minimal

This tutorial is designed to get new users started with Embree. It can be compiled
as both C and C++. It demonstrates how to initialize a device and scene, and how
to intersect rays with the scene. There is no image output to keep the tutorial as
simple as possible.

Source Code

4.2 Host DeviceMemory

This tutorial shows four different ways to use explicit host and device memory
with SYCL.

Source Code

4.3 Triangle Geometry

This tutorial demonstrates the creation of a static cube and ground plane
using triangle meshes. It also demonstrates the use of the rtcIntersect1 and

https://github.com/embree/embree/blob/master/tutorials/minimal/minimal.cpp
https://github.com/embree/embree/blob/master/tutorials/host_device_memory/host_device_memory_device.cpp
https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp

EmbreeTutorials 39

rtcOccluded1 functions to render primary visibility and hard shadows. The
cube sides are colored based on the ID of the hit primitive.

Source Code

4.4 Dynamic Scene

This tutorial demonstrates the creation of a dynamic scene, consisting of sev-
eral deforming spheres. Half of the spheres use the RTC_BUILD_QUALITY_REFIT
geometry build quality, which allows Embree to use a refitting strategy for these
spheres, the other half uses the RTC_BUILD_QUALITY_LOW geometry build qual-
ity, causing a high performance rebuild of their spatial data structure each frame.
The spheres are colored based on the ID of the hit sphere geometry.

Source Code

https://github.com/embree/embree/blob/master/tutorials/triangle_geometry/triangle_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp
https://github.com/embree/embree/blob/master/tutorials/dynamic_scene/dynamic_scene_device.cpp

EmbreeTutorials 40

4.5 Multi SceneGeometry

This tutorial demonstrates the creation of multiple scenes sharing the same
geometry objects. Here, three scenes are built. One with all the dynamic spheres
of the Dynamic Scene test and two others each with half. The ground plane is
shared by all three scenes. The space bar is used to cycle the scene chosen for
rendering.

Source Code

https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multiscene_geometry/multiscene_geometry_device.cpp

EmbreeTutorials 41

4.6 User Geometry

This tutorial shows the use of user-defined geometry, to re-implement in-
stancing, and to add analytic spheres. A two-level scene is created, with a trian-
gle mesh as ground plane, and several user geometries that instance other scenes
with a small number of spheres of different kinds. The spheres are colored using
the instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry instanced in different ways can be distinguished.

Source Code

https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/user_geometry/user_geometry_device.cpp

EmbreeTutorials 42

4.7 Viewer

This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing
the index and vertex buffer with the application. It also demonstrates how to
support additional per-vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to work:

./viewer -i model.obj

Source Code

https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp
https://github.com/embree/embree/blob/master/tutorials/viewer/viewer_device.cpp

EmbreeTutorials 43

4.8 Intersection Filter

This tutorial demonstrates the use of filter callback functions to efficiently
implement transparent objects. The filter function used for primary rays lets the
ray pass through the geometry if it is entirely transparent. Otherwise, the shad-
ing loop handles the transparency properly, by potentially shooting secondary
rays. The filter function used for shadow rays accumulates the transparency of
all surfaces along the ray, and terminates traversal if an opaque occluder is hit.

Source Code

https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp
https://github.com/embree/embree/blob/master/tutorials/intersection_filter/intersection_filter_device.cpp

EmbreeTutorials 44

4.9 InstancedGeometry

This tutorial demonstrates the in-build instancing feature of Embree, by in-
stancing a number of other scenes built from triangulated spheres. The spheres
are again colored using the instance ID and geometry ID of the hit sphere, to
demonstrate how the same geometry instanced in different ways can be distin-
guished.

Source Code

4.10 InstanceArrayGeometry

This tutorial demonstrates the usage of instance arrays in Embree. Instance

https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/instanced_geometry/instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/forest/forest_device.cpp

EmbreeTutorials 45

arrays are large collections of similar objects. Examples are sand dunes that con-
sist of millions of instances of a few grain models or, like here, a forest consisting
of many instances of a few tree models.

In this application can switch between representing the scene with regular
instances or (one!) instance array. It also prints several stats, that demonstrate
the memory savings and faster BVH build times when using instance arrays for
such scenes. Instance arrays come with a small overhead on CPU and should
be preferred if memory consumption is more important than raytracing perfor-
mance.

Source Code

4.11 Multi Level Instancing

This tutorial demonstrates multi-level instancing, i.e., nesting instances into
instances. To enable the tutorial, set the compile-time variable EMBREE_MAX_
INSTANCE_LEVEL_COUNT to a value other than the default 1. This variable is
available in the code as RTC_MAX_INSTANCE_LEVEL_COUNT.

The renderer uses a basic path tracing approach, and the image will progres-
sively refine over time. There are two levels of instances in this scene: mul-
tiple instances of the same tree nest instances of a twig. Intersections on up
to RTC_MAX_INSTANCE_LEVEL_COUNT nested levels of instances work out of the
box. Users may obtain the instance ID stack for a given hitpoint from the instID
member. During shading, the instance ID stack is used to accumulate normal
transformation matrices for each hit. The tutorial visualizes transformed nor-
mals as colors.

Source Code

https://github.com/embree/embree/blob/master/tutorials/forest/forest_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/multi_instanced_geometry/multi_instanced_geometry_device.cpp

EmbreeTutorials 46

4.12 Path Tracer

This tutorial is a simple path tracer, based on the viewer tutorial.
You need to specify an OBJ file and light source at the command line for this

tutorial to work:

./pathtracer -i model.obj --ambientlight 1 1 1

As example models we provide the “Austrian Imperial Crown” model by Mar-
tin Lubich and the “Asian Dragon” model from the Stanford 3D Scanning Repos-
itory.

crown.zip
asian_dragon.zip
To render these models execute the following:

./pathtracer -c crown/crown.ecs

./pathtracer -c asian_dragon/asian_dragon.ecs

Source Code

https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp
http://www.loramel.net
http://www.loramel.net
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/embree/models/releases/download/release/crown.zip
https://github.com/embree/models/releases/download/release/asian_dragon.zip
https://github.com/embree/embree/blob/master/tutorials/pathtracer/pathtracer_device.cpp

EmbreeTutorials 47

4.13 Hair

This tutorial demonstrates the use of the hair geometry to render a hairball.
Source Code

https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/hair_geometry/hair_geometry_device.cpp

EmbreeTutorials 48

4.14 CurveGeometry

This tutorial demonstrates the use of the Linear Basis, B-Spline, and Catmull-
Rom curve geometries.

Source Code

https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/curve_geometry/curve_geometry_device.cpp

EmbreeTutorials 49

4.15 SubdivisionGeometry

This tutorial demonstrates the use of Catmull-Clark subdivision surfaces.
Source Code

https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/subdivision_geometry/subdivision_geometry_device.cpp

EmbreeTutorials 50

4.16 Displacement Geometry

This tutorial demonstrates the use of Catmull-Clark subdivision surfaceswith
procedural displacement mapping using a constant edge tessellation level.

Source Code

https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/displacement_geometry/displacement_geometry_device.cpp

EmbreeTutorials 51

4.17 Grid Geometry

This tutorial demonstrates the use of the memory efficient grid primitive to
handle highly tessellated and displaced geometry.

Source Code

https://github.com/embree/embree/tree/master/tutorials/grid_geometry
https://github.com/embree/embree/tree/master/tutorials/grid_geometry

EmbreeTutorials 52

4.18 Point Geometry

This tutorial demonstrates the use of the three representations of point ge-
ometry.

Source Code

https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/point_geometry/point_geometry_device.cpp

EmbreeTutorials 53

4.19 Motion Blur Geometry

This tutorial demonstrates rendering of motion blur using the multi-segment
motion blur feature. Shown is motion blur of a triangle mesh, quad mesh, subdi-
vision surface, line segments, hair geometry, Bézier curves, instantiated triangle
mesh where the instance moves, instantiated quad mesh where the instance and
the quads move, and user geometry.

The number of time steps used can be configured using the --time-steps
<int> and --time-steps2 <int> command line parameters, and the geometry
can be rendered at a specific time using the the --time <float> command line
parameter.

Source Code

https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp
https://github.com/embree/embree/blob/master/tutorials/motion_blur_geometry/motion_blur_geometry_device.cpp

EmbreeTutorials 54

4.20 QuaternionMotion Blur

This tutorial demonstrates rendering of motion blur using quaternion inter-
polation. Shown is motion blur using spherical linear interpolation of the rota-
tional component of the instance transformation on the left and simple linear
interpolation of the instance transformation on the right. The number of time
steps can be modified as well.

Source Code

https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp
https://github.com/embree/embree/blob/master/tutorials/quaternion_motion_blur/quaternion_motion_blur_device.cpp

EmbreeTutorials 55

4.21 Interpolation

This tutorial demonstrates interpolation of user-defined per-vertex data.
Source Code

https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp
https://github.com/embree/embree/blob/master/tutorials/interpolation/interpolation_device.cpp

EmbreeTutorials 56

4.22 Closest Point

This tutorial demonstrates a use-case of the point query API. The scene con-
sists of a simple collection of objects that are instanced and for several point in
the scene (red points) the closest point on the surfaces of the scene are computed
(white points). The closest point functionality is implemented for Embree inter-
nal and for user-defined instancing. The tutorial also illustrates how to handle
instance transformations that are not similarity transforms.

Source Code

https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp
https://github.com/embree/embree/blob/master/tutorials/closest_point/closest_point_device.cpp

EmbreeTutorials 57

4.23 Voronoi

This tutorial demonstrates how to implement nearest neighbour lookups us-
ing the point query API. Several colored points are located on a plane and the
corresponding voroni regions are illustrated.

Source Code

https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp
https://github.com/embree/embree/blob/master/tutorials/voronoi/voronoi_device.cpp

EmbreeTutorials 58

4.24 Collision Detection

This tutorial demonstrates how to implement collision detection using the
collide API. A simple cloth solver is setup to collide with a sphere.

The cloth can be reset with the space bar. The sim stepped once with n and
continuous simulation started and paused with p.

Source Code

4.25 BVHBuilder

This tutorial demonstrates how to use the templated hierarchy builders of Em-
bree to build a bounding volume hierarchy with a user-defined memory layout
using a high-quality SAH builder using spatial splits, a standard SAH builder,
and a very fast Morton builder.

Source Code

4.26 BVHAccess

This tutorial demonstrates how to access the internal triangle acceleration struc-
ture build by Embree. Please be aware that the internal Embree data structures
might change between Embree updates.

Source Code

https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp
https://github.com/embree/embree/blob/master/tutorials/collide/collide_device.cpp
https://github.com/embree/embree/blob/master/tutorials/bvh_builder/bvh_builder_device.cpp
https://github.com/embree/embree/blob/master/tutorials/bvh_access/bvh_access.cpp

EmbreeTutorials 59

4.27 Find Embree

This tutorial demonstrates how to use the FIND_PACKAGE CMake feature to use
an installed Embree. Under Linux and macOS the tutorial finds the Embree
installation automatically, under Windows the embree_DIR CMake variable
must be set to the following folder of the Embree installation: C:\Program
Files\Intel\Embree3.

Source Code

4.28 Next Hit

This tutorial demonstrates how to robustly enumerate all hits along the ray using
multiple ray queries and an intersection filter function. To improve performance,
the tutorial also supports collecting the next N hits in a single ray query.

Source Code

https://github.com/embree/embree/blob/master/tutorials/find_embree/CMakeLists.txt
https://github.com/embree/embree/blob/master/tutorials/next_hit/next_hit_device.cpp

EmbreeTutorials 60

© 2009–2020 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.

https://www.intel.com/PerformanceIndex

	Intel® Embree Overview
	Supported Platforms
	Embree Support and Contact
	Version History

	Installation of Embree
	Windows Installation
	Linux Installation
	macOS Installation
	Building Embree Applications
	Building Embree SYCL Applications
	Building Embree Tests

	Compiling Embree
	Linux and macOS
	Linux SYCL Compilation
	Windows
	Windows SYCL Compilation
	CMake Configuration

	Embree Tutorials
	Minimal
	Host Device Memory
	Triangle Geometry
	Dynamic Scene
	Multi Scene Geometry
	User Geometry
	Viewer
	Intersection Filter
	Instanced Geometry
	Instance Array Geometry
	Multi Level Instancing
	Path Tracer
	Hair
	Curve Geometry
	Subdivision Geometry
	Displacement Geometry
	Grid Geometry
	Point Geometry
	Motion Blur Geometry
	Quaternion Motion Blur
	Interpolation
	Closest Point
	Voronoi
	Collision Detection
	BVH Builder
	BVH Access
	Find Embree
	Next Hit

